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1 Speech Understanding in the USA:
the ATIS project

In 1989 ARPA (Advanced Research Projects Agency)
started a new project aimed at developing a large vocab-
ulary spontaneous speech understanding system. The
project was called ATIS (Air Travel Information Sys-
tem) and the task was that of answering questions (in
context) for retrieving information contained in a rela-
tional database consisting of a subset of the Official Air-
line Guide [2]. Several research centers (AT&T, BBN,
CMU, MIT, SRI, NIST, MITRE, UNISYS, etc.) joined
the project. Also, some of the sites teamed up for
collecting a relatively large corpus [2] of spontaneous
speech. The corpus was collected through a Wizard of
Oz paradigm. Each subject was given a scenario and
a travel planning problem to solve. The subjects were
requested to solve the problem by interacting with a ma-
chine (all the transactions were actually supervised by
a human wizard). The partial and the final responses
of the machine were presented to the subjects via a dis-
play or a speech synthesizer. The sentences uttered by
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Figure 1: Highest accuracies in the ATIS tests.

the subjects were recorded, transcribed and annotated
carefully. The ATIS corpus consists today of more that
20,000 sentences, including speech waveforms, transcrip-
tions into words, sentence categories (e.g. context de-

pendent, independent, or unanswerable), and reference
answers, namely the set of tuples from the database
that make a reasonable answer to the question posed
by each sentence. The decision on whether a set of tu-
ples makes a reasonable answer for a given question was
carried out according to a document called Principle of
Interpretation|[2]. The Principle of Interpretation docu-
ment was written and updated by a special committee
within the ATIS project and used both by the corpus
annotators and by the system developers. Roughly ev-
ery year, since 1989, official tests were made to evaluate
the performance of the systems in each lab. Three stan-
dard tests (SPREC, NL, and SLS) tests were generally
performed at each evaluation. SPREC measured the ac-
curacy of the speech recognizer as the overall percentage
of correct words, NL measured the overall percentage of
correctly answered sentences (i.e. those for which the
given answer matched the reference answer) of the nat-
ural language component alone (i.e. the system input
was the textual transcription of each answerable sen-
tence), and SLS measured the overall percentage of cor-
rectly answered sentences for the complete systems (i.e.
the system input was the actual speech). Fig 1 shows
the highest accuracy reported among all participating
sites in the three standard tests from the beginning of
the project until today. The small drop in accuracy for
the NL and SLS tests in 1993 was due to a change in
the complexity of the task (the size of the relational
database was increased considerably).

2 CHRONUS, the AT&T speech under-
standing system

CHRONUS, the AT&T speech understanding system,
reported among the top scores in the three tests of 1994
ATIS evaluation. This version of CHRONUS was devel-
oped in less than one year by the authors of this paper
based on the following principles:

e Learnability. Everything that can be learned from
available data should. The corpus in an invaluable



source of knowledge that can be used for training
stochastic models used at all levels of processing.

e Separation of knowledge and algorithms, allows for
an easy incremental improvement of the system.

o Separation of general and task specific knowledge,
eases the process of reuse and portability of the
system.

e Locality. The various modules of the system uses
local algorithms (i.e. that operate on independent
portions of the sentence) that are generally easy
to understand, modify, update, and improve. The
non local linguistic phenomena are demanded to a
single module (i.e. the interpreter) at a later stage
of processing.

e Habitability. The system does not attempt to model
complex linguistic events that are extremely rare in
spontaneous speech. Rather it is extremely robust
to non linguistic phenomena frequently occurring in
spontaneous speech (e.g. ungrammaticalities, false
starts, user and/or speech recognizer mistakes).

The functional diagram of CHRONUS is shown in Fig 2.
In the rest of this paper we will be giving a short descrip-
tion of each module and a summary of the performance.
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Figure 2: A functional diagram of CHRONUS, the
AT&T speech understanding system

2.1 Spontaneous Speech Recognition

In general, the first operations performed by almost any
recognizer are to sample the input speech (we used a
16kHz rate), and to extract from the sampled waveform
a sequence of feature vectors. These are the acoustic
data on the basis of which the recognizer decides which
words are spoken. In our system the feature vectors are
computed every 10 ms, and they have 39 components,
namely twelve mel-frequency cepstrum coefficients and
speech energy, with their 15 and 2"? derivatives [5].
Sentence recognition is the process of finding the most

likely sequence of words conditioned by the available
acoustic data. The conditioned word sequence proba-
bility is defined in terms of stochastic models, namely
the phonetic acoustic models (which provide probabil-
ities that a given feature vector sequence corresponds
to the phonemes), the lexicon (that defines words in
terms of phonemes), and the language model (it assigns
a probability value to any word sequence). The recog-
nition accuracy depends on the adopted models, and
in particular we addressed two crucial issues concerning
spontaneous speech:

1. Speech model estimation problem. Even the
large speech data bases used for model training
cannot explicitly represent all the characteristics of
spontaneous speech, that includes disfluencies, false
starts, breath noise, pauses, ungrammatical sen-
tences, unexpected phrases, and an open and large
vocabulary. Therefore, for state of the art recog-
nition accuracy, it is necessary to improve the ro-
bustness of statistical estimates of events that are
sparsely observed in the training data. Further-
more, it is important to use techniques to generalize
the training data for the estimation of statistics of
unseen events, that do not explicitly appear in the
training data.

2. Computational complexity is also an important
issue. For quick development of new ideas, we have
designed a unified representation (by non determin-
istic stochastic finite state automata [7] ) for n-gram
language models of different orders. Therefore, we
can test different types of models without changing
the recognizer architecture.

Acoustic Models

The acoustic models consist of triphone (i.e. phoneme
in left and right context) Hidden Markov Models
(HMM) [5] with continuous state likelihood functions
defined by Gaussian mixtures.

To make better use of the available training data, the
state distributions of the HMM'’s are tied [6], i.e. corre-
sponding states of different triphone models of the same
base phone may share the same state likelihood func-
tion. With the available training data, without state
tying, we can reliably estimate only the HMM’s of a
small number of the ”"most frequent” triphones (i.e. less
than 2,000). Thanks to state tying we can now reliably
estimate the HMM’s of those triphones that appear only
once in the training data. In the current system we de-
fined 19,000 triphone models, based on 3,500 different
likelihood functions.

For improved accuracy, the recognizer uses two sets of
gender dependent (male and female) HMM’s. However
only half of the total amount of training data are avail-
able for the estimation of gender-dependent HMM’s,
which are therefore less robust than gender-independent



models. Moreover we interpolate the state likelihoods
of the gender-dependent triphone HMM’s with the cor-
responding state likelihoods of the gender-independent
HMM’s. Automatic speaker-gender classification is per-
formed prior to recognition. Then the corresponding in-
terpolated gender dependent triphone HMM’s are used.
The acoustic models were estimated using 20,000 ATIS
training utterances with an additional 8,000 utterances
from a different corpus. The lexicon consists of 1,530
words, with one pronunciation per word defined auto-
matically by the AT&T text to speech system.

Language Model.

In the current speech recognizer we used a new lan-
guage model representation based on non-deterministic
stochastic finite state automata, including model esti-
mation procedures [7]. These automata provide a uni-
fied representation for n-gram language models of dif-
ferent orders. They also implement an accurate and
extremely efficient approximation of the back-off proba-
bilities [1]. This representation allows both for a recogni-
tion algorithm independent of the language model order
and type, and an efficient implementation.

Word classes are used to increase the robustness of the
language model estimation. They correspond to sets of
semantically similar words (e.g. city names, days of the
week, etc..). Word classes allow for more robust prob-
ability estimates, because different words in the same
class share the available training data. We also explic-
itly model compound words, that are word sequences
that should be treated as single units (e.g. "I'D LIKE
TO”, ”HOW MUCH”, "THANK YOU”, etc.). This im-
plicitly lengthens the word history associated with the
n-gram formulation.

The trigram model of word classes with compound
words was estimated from a total of 20,000 ATIS sen-
tences.

2.2 Natural Language Processing

Lezxical Analysis

The function of the lexical analyzer is that of creating a
lattice of word hypotheses out of a string of words (ei-
ther from text input or recognizer output). The different
hypotheses in the lattice correspond to possible interpre-
tations of words and/or phrases according to predefined
categories. Each category represents a set of words or
phrases that are considered semantically equivalent by
the successive conceptual representation. In general plu-
ral and singular forms of a noun constitute a category,
as well as different verb inflections. This reduces the
effective size of the lexicon enhancing the robustness of
the stochastic conceptual representation [3], and the ro-
bustness against recognition errors (speech recognizers
are likely to confuse among different inflections of the
same word). Other categories correspond to items in the

application, like numbers, city names, airport names,
acronyms, etc.

Conceptual Decoding

Rather than attempting to parse sentences as a whole,
the conceptual decoder detect phrases that are as-
sociated to units of meaning called concepts. The
set of concepts is application dependent For instance,
the set of concepts for the ATIS task roughly cor-
responds to the set of attributes of the relational
database and includes concepts like destination,
origin, ground-transportation, aircraft-type,
meal, departure-time, arrival-time, etc. The out-
put of the conceptual decoder is a segmentation of the
original sentence into phrases labeled with the corre-
sponding conceptual unit. The algorithm is based on a
stochastic semantic model (conceptual HMM) first pro-
posed in [3] that corresponds to HMM whose states are
related to the concepts, and are described by concept
conditional stochastic language models. In the current
implementation both the semantic model and the con-
cept conditional language models are bigram back-off
networks [7], estimated automatically with a training
loop procedure [4] from more than 7,000 sentences.

Template Generation and Interpretation

The template generator produces a representation of the
sentence meaning in the form of a template, i.e. an un-
ordered set of keyword /value pairs [4]. Each segment in
the conceptual segmentation can produce one or more
keyword/value pairs. The process of translating a seg-
ment into a keyword/value pair is performed by pro-
grammable finite state machines [9].

The function of the interpreter is to resolve ambigu-
ities and to correlate non local information in the tem-
plates, both from other portions of the same sentence
and from previous sentences. To deal with context de-
pendent sentences the interpreter merges the template
of the previous sentence in the same session with the
current template. Merging rules are defined at the level
of every single keyword/value pair. This module is im-
plemented as a set of handwritten rules. A corpus and
an evaluation procedure are very valuable for the devel-
opment of the interpreter, since they allow to set up an
automatic way of measuring the effectiveness and the
consistency of each newly introduced rule. In the de-
velopment of the interpreter for ATIS, every time new
rules were introduce, the system was evaluated on more
than 7,000 sentences for finding possible inconsistencies.

The Relational Database Interface

The relational database interface takes the meaning rep-
resentation in the form of a template and extracts the
requested information from the database. The conven-
tional way of doing this consists in writing a set of tran-



scription rules that transform the template into an SQL
statement. The complexity of this approach is high,
and the resulting code is hard to maintain and to port
to other applications because it depends on the struc-
ture of the database. In our approach the relational
database is represented by a network that can be easily
derived from the database schema. The network is nav-
igated through a constraint propagation algorithm that
extracts the proper tuples.

3 Results and conclusions
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Figure 3: Error rates reported by different sites in the
1994 ATIS test

Fig. 3 shows the error rate in the three standard ATIS
tests reported by different sites in the 1994 evaluation.
The AT&T system obtained 3.5% of error in the speech
recognition test (SPREC), 5.9% in the natural language
test (NL) and 8.9% in the test of the complete system
(SLS) [8, 9]. It was the best system in the NL test. An
analysis of the errors showed that most of them can be
attributed to the limitations of its flat, local, and syntax-
free semantic representation that does not model com-
plex relationships between subsets of constraints, other
errors are due to the interpretation module that cannot
handle long range contextual information, and of course
general imperfectness of the system (and its developers).
Overall, the AT&T system obtained better results than
all the other more conventional systems that although
able to handle more complex linguistic phenomena are
probably harder to train and update.
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