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ABSTRACT 
This paper reports on methods for automatic classification of 
spoken utterances based on the emotional state of the speaker. 
The data set used for the analysis comes from a corpus of hu-
man-machine dialogs recorded from a commercial application 
deployed by SpeechWorks. Linear discriminant classification 
with Gaussian class-conditional probability distribution and k-
nearest neighborhood methods are used to classify utterances 
into two basic emotion states, negative and non-negative. The 
features used by the classifiers are utterance-level statistics of 
the fundamental frequency and energy of the speech signal. To 
improve classification performance, two specific feature selec-
tion methods are used; namely, promising first selection and 
forward feature selection. Principal component analysis is 
used to reduce the dimensionality of the features while maxi-
mizing classification accuracy. Improvements obtained by 
feature selection and PCA are reported in this paper. We re-
ported the results. 

1. INTRODUCTION 
The motivation for the recognition of negative emotions in 
speech comes from the increased role spoken dialog systems 
are playing in human-machine interaction, especially for de-
ployment of services associated with call centers such as cus-
tomer care, and for a variety of automatic training and educa-
tional applications. For this reason automatic emotion recogni-
tion in speech has recently received wide attention [1]. The 
goal of an automatic emotion recognizer is to assign category 
labels that identify emotional states.  While cognitive theory 
argues against such categorical labeling [2], it nevertheless 
provides a pragmatic intermediate choice, especially from an 
engineering standpoint. Primary reasons include  (1) A lack of 
a definite description and agreement on a set of basic emotions 
(2) A lack of consistency in description: the same emotional 
category tends to be described in the literature in diverse man-
ner [1]. Focusing on the archetypal emotions --happiness, 
sadness, fear, anger, surprise, and disgust -- is typically justi-
fied as a way into arriving at finer distinctions. For example, 
Scherer explored the existence of a universal psychobiological 
mechanism of emotion in speech across languages and cul-
tures by studying the recognition of 5 emotions in nine lan-
guages obtaining 66% of overall accuracy [3].  

We favor the notion of domain-dependent emotions, and 
focus on a reduced space as opposed the entire space of emo-
tions, for the development of algorithms for conversational 
interfaces. In particular, we focus on recognizing negative and 
non-negative emotions from the acoustic speech signal. The 
detection of negative emotions can be used as a strategy to 
improve the quality of the service in call center applications. 
While semantic and discourse information also contribute 
toward emotion recognition, the focus of this paper is on clas-
sification based on acoustic information only.  

Several pattern recognition methods have been explored for 
automatic emotion recognition [4, 5]. For example, Dellaert, et 
al. used maximum likelihood Bayes classification, Kernel 
regression, and k-nearest neighbor methods [6], whereas Roy 
and Pentland used Fisher linear discrimination method [7]. In 
the study proposed in this paper we used linear discrimination 
(LDC) and k-nearest neighborhood (k-NN) classifiers. 

Most of the reported studies have used speech recorded 
from actors that were asked to express (feign) pre-defined 
emotions. One exception is the study by Batliner et al [5]. In 
this work, a ‘Wizard-of-Oz’ scenario was used to collect data.  
Subjects were asked to communicate with a real computer, and 
the study reported classification of the utterances into two 
emotions: ‘emotional’ and ‘neutral’.  Another relevant study is 
by Petrushin who developed a real-time emotion recognizer 
using neural networks for call center applications [4]. He 
achieved ~77 % classification accuracy in two emotion states, 
‘agitation’ and ‘calm’ for 8 features chosen by a feature selec-
tion.  For the work reported in this paper, we used a corpus of 
sentences from a human-machine spoken dialog application 
deployed by SpeechWorks used by real customers.   
 The most common acoustic features used for emotion rec-
ognition are pitch-related and energy-related [3-8]. For exam-
ple, McGilloway, et al. studied 32 different features for the 
classification of 5 emotion states [8]. The features are con-
cerned with F0 (usually regarded as a pitch), energy, duration 
and tune (segments of the pitch contour bounded at either end 
by a pause of 180 ms or more). Benchmark testing was done 
on the features and highly contributing features were found 
using linear discriminant analysis (LDA). In our work we used 
ten utterance-level statistics derived from F0 and energy as the 
acoustic features for emotion recognition. A description of 
those features is provided in Sec.3. 
 By far, most previous research on front-end signal process-
ing for emotion recognition has focused on a variety of feature 
sets obtained directly from the speech signal and evaluated 
them with respect to the resulting classification accuracy/error 
[4, 6]. Some of the features may be highly correlated, with 
redundant information and hence may not be optimal. Since 
we pose emotion recognition in human speech as a pattern 
recognition problem, we can apply component analyses such 
as principal component analysis (PCA) to discover, and re-
duce, the underlying dimensions of the feature space.  Another 
advantage of using PCA for dimensionality reduction is that 
the large dimensionality of the feature space can hurt the per-
formance of the pattern classification if the size of the training 
data is small. Thus, in this work, we adopted PCA for feature 
reduction. 
 The rest of the paper is organized as follows: Section 2 
describes the speech data used in the experiments. Section 3 
discusses the features extracted from the speech data, and 
describes the PCA feature reduction method and two other 
feature selection methods that have been used in the experi-



 

 

ments.  Section 4 presents the results of classification experi-
ments and Section 5 provides the conclusions.  

2. SPEECH DATA PREPARATION 
The speech data (8kHz, mu-law) used in the experiments was 
obtained from real users engaged in a spoken dialog with a 
machine agent over the telephone for a call center application 
deployed by SpeechWorks. The speech database contained 
1187 calls, each having average of 6 utterances; therefore, the 
total number of utterances was approximately 7200. The first 
step in data processing was to mine this data to select portions 
that would enable us investigate emotion recognition.  In order 
to facilitate the labeling process, we first used objective meas-
ures such as ASR accuracy, total number of dialog turns, and 
rejection rate to narrow down the inventory to potentially use-
ful dialogs for our experiments.  This was followed by subjec-
tive tagging of the data into one of two possible emotion cate-
gories -- negative and non-negative by two different human 
listeners. In our study, ‘negative’ emotions represent anger or 
frustration in human speech, whereas ‘non-negative’ emotions 
are the complement of that, i.e., they represent neutral or posi-
tive emotions such as happiness or delight. The order of utter-
ances was randomly chosen in order for listeners not to be 
influenced in guessing the emotions by the situation in the 
dialog (minimizing thus the effect of discourse context). After 
the human listening test, it turned out that most of the ‘non-
negative’ utterances were neutral, i.e., had no apparent display 
of emotions. For this work, we selected those utterances for 
which both listeners had complete agreement in their tagging. 
Overall percentages of agreements were 70.5 % for male 
speech data and 65.5 % for female speech. That resulted in 40 
‘negative’ and 182 ‘non-negative’ emotion-tagged utterances 
from 45 calls of female speakers and 31 ‘negative’ emotion 
and 122 ‘non-negative’ emotion-tagged data from 29 calls of 
male speakers.  To ensure a proper balance, 80 utterances from 
female speakers (40 for each category) and 62 utterances from 
male speakers (31 each) were chosen for our experiments.  

Data sparsity is a critical challenge and a reality in the 
study of emotion recognition. Display of negative emotions is 
relatively infrequent in realistic human-machine interactions 
but nevertheless important to be detected. Hence, algorithm 
development for classification should attempt to cope with this 
issue.  

3. FEATURE EXTRACTION 
In our experiments, we computed only acoustic features such 
as pitch and energy related features from the speech signal. 
Other features would be useful for the emotion recognition: for 
instance, linguistic information, e.g., the use of swear words 
and discourse information, e.g., repetition of the same sub-
dialog. A scheme to combine those ‘content-related’ features 
with acoustic features was proposed in [5]. Here, we focus 
only on acoustic features.  

Base Features 
The acoustic features chosen for emotion recognition com-
prised utterance-level statistics obtained from the pitch (F0) 
and energy information of the speech signal. These included 
the mean, median, standard deviation, maximum, and mini-
mum for pitch, and mean, median, standard deviation, maxi-
mum, and range (maximum – minimum) for energy. These 
are referred to as base features since they provide the starting 
point for this study. For pitch calculations, only voiced re-

gions were taken into account. To compute the energy of the 
speech signals, we used a 30 ms Hamming window with 10 
ms overlap. Further all the samples were normalized, i.e., the 
origin was shifted to the means of the features and the vari-
ances of all features were scaled to 1. 

Feature Reduction by PCA 
To improve classification performance, we reduced the di-
mension of the features by principal component analysis 
(PCA) [9]. PCA involves computation of the sample d × d 
covariance matrix Σ  of the full feature set with d-
dimensions, calculation of the eigenvalues and eigenvectors 
of Σ , and finally sorting it according to decreasing eigenval-
ues. Then, the largest k eigenvectors are chosen to form a k × k 
matrix A whose columns consist of the k eigenvectors. We 
can obtain new features set by preprocessing features accord-
ing to: 

)(A' T µxx −=                                    (1) 

where µ  is the mean vector for x.  
Obviously the feature set after PCA is different from the base 
feature set since it is located in the projected feature space, 
and the dimension of the features can be usually reduced.    

Feature Selection 
All of the base acoustic features we proposed are not equally 
useful for emotion recognition thereby motivating the need 
for feature selection. The rationale for feature selection is that 
new or reduced features might perform better than the base 
features since we can eliminate irrelevant features from the 
base feature set. This can also reduce the dimensionality, 
which can otherwise hurt the performance of the pattern clas-
sifiers. For feature selection, we used promising first selection 
(PFS) and forward selection (FS) methods [6]. 
 In PFS, we used k-NN classification on each feature di-
mension separately, and ordered them according to increasing 
leave-one-out cross validation error, thus adding new feature 
dimension successively each time. We start by including in 
the feature set the feature that shows the best performance, 
and proceeded by adding the 2nd best feature, calculating the 
classification error, and continuing until all the feature com-
ponents are exhausted.  

Forward Selection chooses features and adds the best per-
forming features in conjunction with the dimensions already 
selected, i.e., it tries to find out all the possible combinations 
unlike the PFS method where new features are added in isola-
tion.  

4. EXPERIMENTAL RESULTS 

We used two pattern recognition techniques to classify the 
emotion states conveyed by the speech utterances: (1) linear 
discriminant classifier (LDC) that assumes each class has 
Gaussian probability distribution. (2) k-nearest neighborhood 
(k-NN) classifier. In the following experiments all the error 
rates shown were calculated by leave-one-out cross validation 
for the maximal use of available data. In this procedure, we 
use all but one data for training, and reserve one remaining 
piece of data for testing. This procedure was repeated for each  



 

 

 

Figure 1: Probability density function estimation by Parzen 
Window of 4 feature dimensions -- mean, median, STD, and 
maximum of F0 -- in Base Features (Female Speakers). 
Straight lines represent ‘negative’ and dashed lines represent 
‘non-negative’ emotion, respectively (not normalized).  

sentence in the selected corpus. The performance of the classi-
fiers was assessed by computing the average classification 
error rate.  

Comparison of Base Features and Preprocessed Fea-
tures by PCA 

Classifier 
Method 

Error 

Base Features, %  

Error 

PCA (7-dim), % 

LDC 22.5 21.25 

k-NN (k = 3) 30 26.25 

 Table 1a: Results of classification error for base features 
and features preprocessed by PCA (Female Speakers). For 
PCA, the best results were for dimension of 7. 

Classifier 
Method 

Error 

Base Features, %  

Error 

PCA (6-dim), % 

LDC 43.35 25.81 

k-NN (k = 3) 35.48 33.87 

Table 1b: Results of classification error for base features 
and features preprocessed by PCA (Male Speakers). For 
PCA, the best results were for dimension of 6. 

First, we tested the classification performance using 10 base 
features with LDC and k-NN classifiers and the results are 
shown in Tables 1a and 1b. Results for female and male 
speakers are given separately due to significant gender de-

pendency in the results. Using PCA, we reduced the dimen-
sion of features down to 7 (females) and 6 (males), which was 
obtained by cross validation test for each reduced dimension. 
Results indicate that PCA yields improved performance for 
both LDC and k-NN classifiers. Note that random guessing 
error is 50%.   

For the base features, k-NN performed more consistently 
than LDC, and it can be due to the fact that Gaussian assump-
tion may be not valid. The estimated pdf of ‘negative’ and 
‘non-negative’ emotion classes for 4 base features is shown in 
Figure 1. The figure shows that the distributions of the class-
conditional probabilities of the base features are not strictly  
Gaussian.  

Feature Selection 

In order to assess the performance of each feature in isolation, 
we calculated the classification error rates for each feature and 
each classifier; the results for female speakers are given in 
Table 2 (and are similar for males). These results show that the 
discriminative ability of each feature in isolation for each clas-
sifier is different with respect to the classification error. We 
have boldfaced the 3 most discriminative features for each 
classifier. For k-NN classifier, F0_median, Energy_mean, and 
Energy_STD have the most discriminative power in terms of 
minimum classification error. 

Feature Error LDC, (%)  Error k-NN (%) 

(k = 3) 

F0_mean 

F0_median 

F0_STD 

F0_Max 

F0_Min 

Energy_mean 

Energy_median 

Energy_STD 

Energy_Max 

Energy_range 

41.25 

42.5 

50 

47.5 

43.75 

26.25 

33.75 

37.5 

26.25 

32.5 

48.75 

32.5 

50 

63.75 

57.5 

35 

45 

38.75 

41.25 

42.5 

Table 2: Classification error results of each feature in iso-
lation in terms of error rate (female speakers).  

Then we performed PFS and FS (Section 3.3) and calculated 
the classification error for each newly added feature dimension 
in increasing order of error. The classification results for fe-
male and male speakers are shown in Tables 3a and 3b, re-
spectively. The number of features selected by each method is 
given in parenthesis.  For females, the features selected by 
PFS were F0_median, Energy_mean, Energy_STD, En-
ergy_max, and Energy_range whereas FS selected F0_median, 
Energy_max, and F0_mean as the best feature combination. 



 

 

For males, the features selected in the base features for PFS 
were all but Energy_range, while FS selected Energy_mean, 
F0_median, F0_mean, F0_max as the best feature combina-
tion.  
 

Method Error 
Base Feature (%) 

PFS 20 (5) 
FS 22.5 (3) 

Table 3a: Classification error results for promising feature 
selection and forward feature selection for base features in 
female speakers using k-NN (k = 3). 

Method Error 
Base Feature (%) 

PFS 24.19 (9)  
FS 24.19 (4) 

Table 3b: Classification error results for promising feature 
selection and forward feature selection for base features in 
male speakers using k-NN (k = 3). 

Next we performed the experiment for PFS using LDC for 
both female and male speech data. For female speech, the 
classification error was 20% with 3 features, which were En-
ergy_mean, Energy_max, and Energy_range. For male speech 
data, the classification error was 29.03 % with 4 features, 
which were F0_STD, Energy_mean, F0_max, and F0_min.  

5. CONCLUSIONS 
In this paper, we explored automatic recognition of negative 
emotions in speech signals from a real-world application us-
ing pattern recognition techniques, such as LDC and k-NN, in 
conjunction with feature selection and reduction methods 
(PFS, FS and PCA). Such techniques provided improved per-
formance compared to base features: overall classification 
error rates in female speech data were 20% for PFS, 22.5% 
for FS, and 26.25% for PCA with k-NN classifier, respec-
tively. And the results for male speech were 24.19% for PFS, 
24.19% for FS, and 33.87% for PCA. The results are compa-
rable to those by Petrushin, which had ~77% classification 
accuracy for 8 features (after feature selection) in two emo-
tion states using neural network methods [4].  

The reason for gender-specific experiments are due to the 
fact that pitch-related features are very different between fe-
male and male, especially mean, max, and min of F0. Further 
note that k-NN showed more consistent results since the dif-
ferences in classification error between females and males 
were smaller than for LDC, i.e., k-NN depended less on cho-
sen data. That result may be due to the non-Gaussianity of 
class-conditional pdfs. Although the results are promising, 
several important issues remain to be addressed.  
 First we should consider that the data used was from a real-
world application, so no pre-assigned emotion categories were 
available (in contrast to data obtained by explicitly elicited 
emotions). In this respect, more human listening tests should 
be performed to ensure the emotion states of utterances.  
 Second, research on the emotion recognition has focused 
just on the features obtained directly from the signal or 
through some feature selection technique such as the forward 
feature selection method where the final features are a subset 
of the original features. However, sometimes it is more ap-

propriate to perform PCA directly on the original data to dis-
cover the underlying dimensions of features in the sense of 
pattern recognition. The improvements obtained by PCA in 
our study suggest the promise of such an approach for the 
emotion recognition problem. There are many methods to 
perform preprocessing of the data such as factor analysis, 
independent component analysis and so on. Such studies on 
feature selection/reduction may also reveal the inherent char-
acteristics of human emotions.  

Finally, better pattern recognition techniques should be in-
vestigated since there is no clear-cut definition of emotion 
states/categories or their acoustic correlates [1]. Therefore, 
pattern classification methods that can deal with that uncer-
tainty in the emotion states should be studied and developed.  
Such studies should also adopt a principled way for incorpo-
rating linguistic and dialog information in emotion recogni-
tion. 
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