
IEEE ASRU01 - Automatic Speech Recognition and Understanding Workshop, Madonna di Campiglio - Italy, December
9-13, 2001.

ETUDE, A RECURSIVE DIALOG MANAGER WITH
EMBEDDED USER INTERFACE PATTERNS

Roberto Pieraccini, Sasha Caskey, Krishna Dayanidhi, Bob Carpenter, Michael Phillips

SpeechWorks International, 17 State Street, New York, NY 10004, USA
{roberto, scaskey, krishna.dayanidhi, bob.carpenter, phillips}@speechworks.com

ABSTRACT
In this paper we describe ETUDE, a dialog manager that sup-
ports recursive descriptions of the dialog flow in spoken dialog
applications. We also introduce the notion of user interface pat-
terns, i.e. those dialog patterns that are frequently used in appli-
cations. We then describe how these patterns can be built into
the dialog manager engine in order to facilitate the design and
development of complex applications.

1. INTRODUCTION
Most of the enterprise telephony spoken dialog systems deployed
today are based on the directed dialog paradigm [6], in which the
flow of the conversation is highly structured with carefully de-
signed prompts to solicit a response from the user that falls
within the defined grammar of that dialog turn. In general a di-
rected dialog can be represented by a finite state controller
whose states correspond to the system actions (e.g. prompting,
recognizing, accessing external databases, etc.). Traditionally,
developers of enterprise dialog systems developed the logic of
directed dialog call flow using tools provided by the telephony
platform (e.g. Intervoice Brite, http://www.brite.com) and remi-
niscent of the IVR development systems, possibly with the sup-
port of native languages such as C++ and VB.

As the complexity of the systems evolves in both the number of
dialog states of the controller and in the degree of mixed initia-
tive, the cost of design, development and maintenance increases.
One source of complexity in a directed dialog system is the in-
troduction of general UI patterns that support mixed initiative.
Examples of patterns that may appear at any step of the dialog
are commands such as repeat, back-up, startover, as well as the
commands for navigating between different branches of the ap-
plication. In order to increase the degree of mixed-initiative and
allow efficient interaction with the system, especially by expert
users, users may provide extra information beyond what was
requested in the prompt. Similarly allowing for digressions at
some steps of the dialog, either for clarification or to complete
subtasks, would enhance the overall usability of the system.

With the competing objectives of reducing design and develop-
ment costs and also and allowing more flexible interactions, it
seems necessary to completely or partially automate the design
and the implementation of the dialog strategy. Furthermore, the
designer must be afforded the freedom to specify the user inter-
face with a fine degree of control. Such automation can be
achieved by introduction of a dialog manager with built-in be-
havior patterns that can be understood, tuned and deployed by
dialog system designers and developers. The challenge is to find

the right compromise between built-in behavior of the dialog
manager and the flexibility required by the designers.

Among several sophisticated dialog manager schema [1] [2],
finite state automata and recursive transition networks [3] [4]
have been successfully used in dialog system as ways of both
describing and controlling the dialog flow. We describe here
ETUDE, an implementation of a recursive transition network
controller for dialog system that addresses the issues described
above. ETUDE can be summarized as follows. A dialog flow is
specified as a directed graph whose nodes represent actions (e.g.
prompts, recognition, database access, etc.) that the dialog sys-
tem invokes to interact with the external environment (e.g. the
caller, the backend, etc.) and whose transitions are associated to
conditions on the session variables. One of the distinguishing
characteristics of ETUDE is that it permits recursion in the sense
that a single node may be expanded as a whole dialog itself. In
the rest of the paper, we describe how ETUDE implements UI
patterns such as backing up, entering a subdialog and jumping
out of the current dialog and taking up another one. ETUDE’s
dialog execution strategy directly supports state persistence,
which is especially useful for stateless architectures such as
VoiceXML.

In the rest of this paper we will describe the dialog flow abstrac-
tion and the implementation of the ETUDE dialog manager.

2. THE DIALOG FLOW ABSTRACTION
The state of an individual dialog session is represented by a
frame, which maps keys consisting of strings to values, which
can be strings, numbers, Booleans, sequences of values, or
frames. A dialog is a pair SN,D Ν= , where

},,,{ 21 MNNN …=Ν is a set of nodes, and N∈SN is the start

or initial node. A node is a pair AN ,T= where

QTTT …,, 21=T is a sequence of transitions, and A is an ac-

tion. A transition is a pair CNT E ,= , where N∈EN is the

destination node of the transition and C is a condition. A condi-
tion is a function mapping frames to Boolean values. An action
is an arbitrary function mapping a frame to a frame. The execu-
tion of a dialog on a frame is defined according to the following
pseudo-code:

Frame execute(Dialog d, Frame f) {
 for (Node n = d.initialNode; n != null;) {
 f = n.action(f);
 Transitions ts = n.transitions;
 n = null;
 for (k = 0;k < ts.length && n != null; ++k)

 if(ts[k].condition(f))
n=ts[k].destination;

 return f;
}

where d.initialNode is the initial node of dialog d; n.action is the
action associated with node n; n.transitions is the sequence of
transitions associated with node n; ts.length is the length of ts;
ts[k] is the k+1st transition of ts; ts[k].condition is the condition
associated with the k+1st transition of ts; and ts[k].destination is
the destination node associated with the k+1st transition of ts.

Note that the evaluation function of a dialog has the same form
as an action. In general, ETUDE supports recursion by allowing
the action of a given node in a dialog to be given by another
dialog. This helps structure complex dialogs into sub-dialogs.

3. GOTO AND GOSUB SHORTCUTS

In a directed dialog application the dialog manager strictly con-
trols the course of the conversation and there is minimal built-in
support for caller initiative. Directed dialog is an effective con-
versational strategy for new users, who appreciate the guidance
provided by the system and it allows them to quickly form a
mental map of the service. However a strictly directed dialog
strategy can get in the way of expert and repeat callers who are
seeking for a more efficient interaction. Certain applications
require a higher degree of initiative. The concept of shortcuts
tries to address both strategies by allowing designers to overlay a
set of shortcuts over the directed dialog graph. We identified
two kinds of shortcuts, namely GOTO and GOSUB shortcuts.

GOTO shortcuts permit transitions from an origin node within
one dialog to a destination node that is outside the dialog. In
practice, a GOTO shortcut acts as a transition, the only differ-
ence being in that the destination node may be outside the cur-
rent dialog. Once a GOTO shortcut is executed, the dialog pro-
ceeds from the destination node without returning to the original
node. GOTO shortcuts have to be defined and implemented tak-
ing into consideration the recursive nature of the dialog execu-
tion. To pick out a node uniquely, a path must be specified to
the node through the sub-dialog hierarchy. For example, with:

,...}{...,nodes.
,...}{...,nodes.

,

,

,...},...,{...,nodes.

2

1

2

1

0

l

k

jj

ii

ji

ND
ND

DTN

DTN

NND

=

=

=

=

=

If we want to establish a GOTO shortcut from node lN of dia-
log 2D (when a certain condition lC verifies) to node kN of dia-
log 1D when dialog 1D is invoked as the action of iN (dialog

1D could be invoked as an action of other nodes as well). We
also assume that dialog 0D is the main dialog and that the action
associated to the origin node lN is a terminal (i.e. it is not a dia-

log) collection action (i.e. it is an action directly connected to
speech recognition collection events). When the system is exe-
cuting node lN , the execution stack can be represented as

lj NN . , meaning that the execution environment is currently

executing the function associated to node jN which in turn is

invoking the function associated to node lN . The destination
node of the desired GOTO shortcut can be identified by the exe-
cution stack ki NN . . The algorithm for the implementation of a
GOTO shortcut has to perform the following two operations: a)
Pop nodes out of the execution stack until the outer execution
layer is reached b) Push nodes into the execution stack until the
defined destination node stack is reached.

An example of the use of GOTO shortcuts is global navigation
commands. For instance, consider the following transaction (this
example follows the dialogs shown in Fig. 1)

S: Would you like to get an account balance or make a transfer?
U: Make a transfer.
S: From which account would you like to transfer, checking or
savings?
U: Savings.
S: How much would you like to transfer from savings?
U: Uh. Go to account balance.
S: Account balance. For which account would you like a bal-
ance, checking or savings?

GOSUB shortcuts are used to implement local digressions in the
dialog, but differ from sub-dialogs in that they return for re-
execution of the invoking node. An example of a GOSUB short-
cut can be exemplified by the following dialog.

S: Would you like to get an account balance or make a transfer?
U: Make a transfer.
S: From which account would you like to transfer, checking or
savings?
U: Savings, please.
S: How much would you like to transfer from savings?
U: Hmm. How much money do I have in my savings?
S: Account Balance. The balance of your savings account is
2,356 dollars and 37 cents.
S: How much would you like to transfer from savings?

In this case, in contrast to the GOTO shortcut example, the sys-
tem executes the account balance sub-dialog and then returns to
the calling node, re-executing the interrupted collection action.
In order to give more flexibility to the designer for a fine-tuning
of the prompts (e.g. in the example, the re-prompting for the
transfer amount differs from the original prompt), the node exe-
cution function can detect whether a return from a GOSUB
shortcut is in effect.

4. USER INTERFACE PATTERNS

There are certain recurrent interface patterns that appear, or are
likely to appear, in many different dialog systems. Some of them
can be considered universal patterns. Examples of those are
back-up, start-over, repeat, main-menu. Their meaning is obvious
in most dialog contexts, and they start to assume the quality of
universal navigation commands. There is a strong analogy be-
tween these UI universals and the universal commands we ex-
pect to find in any properly designed desktop application, such as
the File and Edit menus, the Undo command, Help, etc. Often,
when some of the commands do not make sense in some part of
the application they are still there in a disabled form (e.g. grayed
out). Similarly, as spoken dialog applications become more and
more pervasive and ubiquitous, and more and more users become
accustomed to them, it will become natural to expect certain
commands to be always available, such as back-up (which is
analogous to the undo command in desktop applications), help,
etc.1

There is another class of UI patterns that recur in many applica-
tions, but only in certain situations or in certain parts of some
applications. The universal quality of these UI patterns is not in
their presence at any point of the dialog, but in their use. For
instance, let’s consider list navigation. Depending on the kind of
functionality of the list (e.g. selection, editing, etc.), the naviga-
tion follows certain predetermined patterns (e.g. Say next, previ-
ous or that one). In the desktop analogy, these patterns can be
associated, for instance, with the procedures for opening and
saving files, which are the same from application to application.

However, all these patterns may differ from application to appli-
cation and from implementation to implementation. A universal
consistency across applications and across implementations is
desirable for several reasons. One of the main reasons is that
consistency of UI patterns can help users learn how to use spo-
ken dialog systems independently of the application[5], thus
increasing the overall transaction completion rates, the caller’s
population acceptance of the spoken dialog technology, and the
overall user satisfaction.

One way to guarantee and encourage consistency of the UI pat-
terns across applications and implementations consists in embed-
ding the underlying logic in the dialog manager engine. Consid-
ering also that the implementation of some of these patterns may
be quite complex, a dialog manager engine that includes the most
common UI patterns can be highly beneficial also to the reduc-
tion of the design/development cost of complex applications.

5. UI UNIVERSALS IMPLEMENTATION
ISSUES

UI universals are defined as properties of collection dialog nodes
(i.e. a dialog nodes that are associated with a collection action).
If a dialog node allows a certain UI universal command, then the
associated command word (e.g. back-up) and its synonyms must
be included in the grammar used by the collection action of that
node. The ETUDE dialog manager does that automatically dur-
ing the initialization phase. In order to keep the consistency of

1 W we did observe instances of users saying Main Menu in ap-
plications where a main menu was not even defined or an-
nounced.

the interface, different levels of activation of universal com-
mands can be specified for each collection node. In our imple-
mentation we have three levels of activation: enabled, corre-
sponding to full functionality of the command, acknowledged,
the command is recognized, but a prompt is played warning that
the command is not active – analogous to the graying-out of
features in desktop applications, and disabled, the command is
not recognized.

Let’s analyze in more details two UI universals: back-up and
repeat.

The back-up command implements the undo feature for voice-
based systems as in the following example:

S: This is the banking application. Do you want account balance
or to make a transfer?
U: Make a transfer.
S: Which account do you want to transfer from? Checking or
savings?
U: Savings.
S: What amount do you want to transfer from your savings?
U: Five hundred dollars.
S: Do you want to transfer five hundred dollars from savings to
checking?
U: back-up
S: What amount do you want to transfer from your savings ac-
count?
U: back-up
S: Which account do you want to transfer from? Checking or
savings?

In order to define the correct operation for back-up, it is neces-
sary to define not only which nodes would accept the back-up
commands, but also which node to back-up to. Of course the
node to back-up to cannot be determined statically for any given
collection node, since it depends on how the dialog evolved up to
that point. Moreover, once a back-up is performed, the frame, i.e.
the set of all session variables, must be reverted to the previous
configuration (undo function). The back-up command is based
on the concept of back-up anchor. A node that is defined as a
back-up anchor is a node to return to when, successively in the
dialog, the caller issues a backup command.

N 3
Which account?

N 4
DO BALANCE

BALANCE dialog

N 3
Which account?

N 4
DO BALANCE

BALANCE dialog

N
From account?

N6
Amount?

N7
Date?

N8
DO TRANSFER

N
From account?

N
Amount?

TRANSFER dialog

N
Date?

N
DO TRANSFER

N0
Balance or
transfer?

N1
BALANCE

N2
TRANSFER

MAIN dialog

N0
Balance or
transfer?

N1
BALANCE

N2
TRANSFER

MAIN dialog

5

Figure 1: Simplified example of structured dialog

A back-up stack is kept in the session frame. Once a back-up
anchor node is visited during the course of a dialog session, a
new stack element is created including a copy of the current
frame and a reference to the backup anchor node. The element is
then pushed into the stack.

Once the user issues a back-up command during a dialog session,
then the element at the top of the back-up stack is retrieved with
a pop operation. The dialog manager then performs a transition
to the back-up anchor node and restores the frame.

A back-up node may not be in the same dialog as the node vis-
ited when the back-up command was issued. Hence the transition
to the back-up anchor has to be performed through a GOTO
shortcut.

A mechanism similar to back-up can be implemented for the
commands start-over and main-menu. In that case there is no
need to keep a stack, but only one anchor and the related frame
are kept for each session.

Similarly to the back-up command, the repeat command needs a
repeat anchor to be defined. Once a node which is defined as a
repeat anchor is visited, a pointer to that node is kept at a particu-
lar location in the current frame. When the user invokes the re-
peat command while a node activated for repeat is being visited,
all the output nodes (i.e. the nodes associated with an output or
prompting action) between the repeat anchor and the current
node are executed by the dialog manager.

Examples of other common UI universals which logic can be
included in the execution algorithm of a dialog are those corre-
sponding to commands such as operator, change-language,and
global navigation commands. Global navigation consists in hav-
ing the initial nodes of branches of sub dialogs announce them-
selves with a special prompt (e.g. <earcon> Account Balance)
and allowing the user to issue commands such as “Go to account
balance”) at any point in the dialog.

6. SUMMARY

We presented in this paper the concept of a dialog manager that
supports a recursive definition of the dialog flow. The dialog
flow abstraction is presented in detail. In addition we described
the concept of UI patterns, i.e. those patterns that typically ap-
pear in most dialog systems. Some of these patterns can be de-
fined as universals, meaning that their presence is expected at
any point in the dialog and would improve the usability of the
systems. We described how the logic of some of the UI univer-
sals can be embedded into the dialog manager engine, both help-
ing encourage the introduction of the UI patterns across different
application and reducing the cost of developing complex applica-
tions.

The authors wish to thank Stephen Springer (SpeechWorks In-
ternational) for his help with the definition of the UI patterns and
Anibal Jodorcovsky (currently with Intelerad Medical Systems)
for his help with the initial implementation of ETUDE.

7. REFERENCES
[1] P. Constantinides, S. Hansma,, C. Tchou,, A.Rudnicky, “A

schema-based approach to dialog control,” in Proceedings
of ICSLP. 1998, Paper 637.

[2] D. Stallard, “Talk’n’Travel: A Conversational System for
Air Travel Planning,” in Proceedings of the Association for
Computational Linguistics 6th Applied Natural Language
Processing Conference (ANLP 2000), Seattle, Washington,
April 29 – May 4, 2000, pp. 68-75

[3] R. Pieraccini, E. Levin, W. Eckert, “AMICA: the AT&T
Mixed Initiative Conversational Architecture,” in Proceed-
ings of EUROSPEECH 97, Rhodes, Greece, Sept. 1997.

[4] S. Seneff, J. Polifroni, “Dialogue Management in the Mer-
cury Flight Reservation System,” presented at Satellite Dia-
logue Workshop, ANLP-NAACL, Seattle, April 2000

[5] S.Shriver, A. Toth, X. Zhu, A. Rudnicky, R. Rosenfeld. “A
Unified Design for Human-Machine Voice Interaction,” in
Proceedings of CHI 2001.

[6] E. Barnard, A. Halberstadt, C. Kotelly, M. Phillips, “A
Consistent Approach To Designing Spoken-dialog Sys-
tems,” in Proceedings of the Automatic Speech Recognition
and Understanding Workshop, Keystone, Colorado, De-
cember 1999.

