
INTERACTIVE GRAMMAR IN
STATE TRANS

Sasha P. Caskey, Ezra Story, R

Speechworks Intern
55 Broad Street, New York
{scaskey, ezra, roberto}@

ABSTRACT
We propose here a method for improving the coverage
of handcrafted context free grammars based on a set of
new sentence examples. The described algorithm aims at
finding the minimal set of modifications to the grammar
that increase its coverage while preserving its original
structure. The algorithm is based on a Finite State
Transducer (FST) representation of context free
grammars. The inference method includes an interactive
component that allow developers to control the
generalization of the new grammar.

1. INTRODUCTION
Most commercial dialog systems are based on hand
crafted context free grammars (CFGs) that, after
usability tests and during the initial stages of
deployment, need to be maintained and modified by the
developer in order to improve their coverage of the
language [1]. Since language data (e.g. a corpus of
transcribed utterances) is typically not available during
the design and development phases of a dialog system,
the initial grammars are created by hand with an attempt
at giving a reasonable coverage. After a series of
usability tests and during early deployment,
transcriptions of the input utterances are becoming
available periodically, a portion of which are not
covered by the initial grammars. It is the job of the
developer to analyze the transcriptions and modify the
grammars accordingly. As the number of deployed
applications and the number and size of grammars used
in those applications grows, so do the development and
maintenance costs.

Speech application developers and user interface
specialists are trained to build grammars with
reasonable generalization capabilities. For example,
given the sentence “I’d like to go to Boston”, a speech
application developer would produce a grammar that
would also cover sentences with similar semantic
structure, such as “I want to go to New York”, or “I am
going to San Francisco”. A very simple grammar that
covers these sentences is shown in Table 1 (with the

sym
gram
i.e.
belo
of T
com
the
Gen
the
task
Stru
the
allo
inst
set
gram
rule
cov

of s

The
obs
auto
algo
stat
the
com
Nev
algo

S
M
D
C

T

S

T
gr
FERENCE WITH FINITE
DUCERS

oberto Pieraccini

ational
, NY 1004 USA
speechworks.com

bol “|” representing disjunction). However, this
mar does not have any generalization capability,

it will not be able to cover other sentences than those
nging to the original set. For instance, the grammar
able 1 will not cover slight variations obtained by
binatorial permutations of the words and phrases in
original set, such as “I want to go to Boston”.
eralization is usually achieved by giving structure to
grammar based on the developer’s insight of the
, the user interface, and the underlying language.
cture is obtained, in CFG formalism, by arranging
grammar rules into a set of non-terminals which
w for a modular design of the language. For
ance, for the above examples, one could think of a
of terminals such as MOVE, DEST and CITY. The

mar shown in Table 2, based on these non-terminal
s, allows for a good degree of generalization and
ers a larger number of variations of the original set

entences.

 task of creating and improving grammars from
erved data can be automated with the help of
matic grammar inference algorithms. Many of these
rithms exist in the literature based on a purely

istical representation of formal languages, such as
inside-outside algorithm [2][3] , or on the

bination of structured and stochastic models [4].
ertheless, statistically based grammar inference
rithms are generally very slow and require very

 = MOVE DEST
OVE = (I’d like to go | I want to go | I am going)
EST = to CITY
ITY = (Boston|New York|San Francisco,...)

able 2: Example of a structured CFG

 = (I’d like to go to Boston |
 I want to go to New York |
 I am going to San Francisco)

able 1: Example of an unstructured CFG
ammar

large amounts of data, possibly annotated. In contrast,
after usability test or early deployment, developers can
rely only on a small set of sentences, generally on the
order of a few hundred.

Some structured grammar inference algorithms, such as
the Error Correcting Grammatical Inference (ECGI)
algorithm [5] are more parsimonious and can be used to
infer finite state grammars able to generalize over a set
of examples. However, one of the drawbacks with
automatically inferred grammars of this kind, is that
they do not have structure, thus are hardly human
readable, hence they are not easy to be modified and
improved by hand. In this context it must be pointed out
that hand tuning of applications is still a common
procedure for improving the performance of commercial
dialog systems.

Another issue with automatic inference of natural
language grammars is generalization. Most of the
learning algorithms tend to generalize in an uncontrolled
way, partly because of the difficulty in providing the
learning algorithm with a set of negative examples that
would control over-generalization [6]. Thus, inferred
grammars generally over-generate with respect to the
underlying language, a property that is not desirable
because it may reduce the constraining power of the
speech recognizer, hence its accuracy.

We should also take into consideration that grammars
are used in dialog systems not only for constraining the
speech recognizer, but also for producing utterance
interpretations. The common way of generating
interpretation consists in augmenting the grammar with
scripts (consisting of variable assignments in the
simplest case) that would generate sets of key-value
pairs from the parse tree. The use of scripts (typically in
ECMA script languages, such as JavaScript, or a subset
of them) for extracting semantic information is
supported by a W3C candidate recommendation [7] and
adopted today by most commercial speech recognizers.
Thus, when new rules are added to the grammar,
developers need to make sure that the scripts that
generate the semantic information are still valid,
possibly modifying them in order to account for the new
rules. This argument contributes to the motivations for
investigating supervised methods apt at increasing the
coverage of grammars over a set of new examples, with
the developer part of the training loop and controlling
the process of grammar learning.

The method we will describe in this paper attempts at
finding and suggesting a set of changes to the original
grammar that would increase its coverage over a set of
sample transcriptions, while maintaining the context
free structure initially created by the developer. The
developer would have the choice of accepting or

reje
thus
opti
imp
to d
thei

The
exis
con
not
mod
acc
term
the
and
inse
rule

In
find
con
equ
that
can
not
com
emb

Thi
not
to i
the
of n
incl
sym
labe
an
FST

An
bou
por
netw
con
inpu
sym
bou
repr
The
stru

In o
to p
arcs
cting those changes. The proposed method would
 allow the use of automatic grammar inference for an
mal modification of the grammar based on an
osed non-terminal structure, while leaving the choice
evelopers of modifying the grammar according to

r understanding of the domain.

2. THE INFERENCE ALGORITHM
 problem of improving the grammar coverage of an
ting CFG can be formalized as follows. Given a
text free grammar G and an input sentence S that is
accepted by G, we want to find the minimal set of
ifications to the grammar that would allow it to

ept S. The minimal set of modifications is intended in
s of minimal edit (or Levenshtein) distance between

original grammar G and the improved grammar G’,
 it is defined as the number of substitutions,
rtions and deletions of terminals performed on the
s of G in order to obtain G’.

order to apply conventional search techniques for
ing the minimal set of edits, it is convenient to
vert the standard SRGS [7] grammar into an
ivalent finite state transducer (FST) [8][9]. Notice
 this operation is possible only if the original CFG
 be represented by finite state machine, i.e. it does
have CFG rules with embedded recursion; most
mercial recognizer explicitly forbid rules with
edded recursion.

s transformation of a CFG to a FST generally does
preserve the original non-terminal structure. In order
nclude and preserve non-terminal information into
FST we need to add nodes and arcs with the purpose
on terminal, or rule boundary labels. Labels can be
uded in an FST by adding an arc with the null
bol as input and the label in question as output. The
l will be then propagated to any FST resulting from
arbitrary composition operation with the current
.

example of FST representation of a CFG with rule
ndary labeling is shown in Figure 1, where the CITY
tion of the CFG of Table 2 is represented. The

ork described in Figure 1 follows the usual
ventions for FSTs, i.e. the arcs are labeled with
t:ouput symbols, with representing the null
bol. The arc labeled as :{ represent the left
ndary of the rule, while the arc labeled as :}CITY
esent the right boundary and the name of the rule.
 above described FST (FG) includes thus all the
ctural information of the original CFG G.

rder to search for the minimal edit that would allow
arse the new sentence S, we will augment FG with
 and nodes that would represent all possible edit

operations. The augmented inference FST will be
denoted by FI . However, we need to maintain a
mapping between the new arcs and nodes of FI, which
correspond to edit operations, and the original FG, in
order to be able to apply the final modifications to G.
This is done by augmenting FI with label arcs with the
intent of marking the original state labels of FG. Doing
so we will have, in FI, the necessary information that
allows us to map any selected modification of FI to the
corresponding nodes of FG (and then to G).

If any word appears in S that is not accounted for by the
original grammar’s set of terminals, the word is added to
the FST vocabulary.

As we discussed earlier, FI represents all the possible
strings that can be obtained from FG by arbitrary
substitution, deletion, or insertion of terminal symbols.
All the edit operations are restricted to within the rule
boundaries, that is to say, no insertions are allowed
across rules.

Let’s define as terminal arc an arc of FI whose
input/output symbols are not labels, but rather terminal
symbols of the corresponding CFG grammar. Let’s also
define as terminal node any node of FI connected,
either to the left or to the right, to at least one terminal
arc. Insertions, in the resulting FI, are thus accounted
for by adding, to each terminal node, a number of arcs
equal to the number of words in the dictionary. Each arc
would have input/output symbols corresponding to each
of all the possible words. This is represented
symbolically in Figure 2 by the loop arcs labeled by :
(where is the set of all possible words). Deletion and
substitution of words is accounted for by inserting a
number of arcs equal to the number of words in the
vocabulary, including the null symbol , in parallel to
any terminal arc. The resulting FST would match any
string obtained by G by applying an arbitrary number of
the above defined edit operations. Since, for suggesting
modifications to G, we are interested in knowing if an
arc corresponds to an insertion, deletion, or substitution
(with respect to the original grammar), we then label the
modification arcs accordingly (i.e. we add label arcs to
the leftmost connection of every insertion, substitution
and deletion arc.) Also, for computing the edit distance,
we associate a weight w=1 to each insertion,
substitution and deletion arc (while the arcs of the
original grammar have weight w=0). An example of the

resu
term
are

Thu

_1
}M
}DE

whi
prec
wan
end
(den
term
note
to t
thus
prev
exa
labe
the
loca
orig
labe
like
wan
(no
wou
Bos
nee
an a

The
find
seq

1 2 3 4
:{ Boston:Boston :}CITY

New York:New York

San Francisco:San Francisco

Figure 1: FST representation of rule CITY with rule
boundary labels

Figu
infer
omit
lting transducer is shown in Figure 2 for the non-
inal rule CITY of the sample grammar (state labels

omitted for clarity).

s FI would represent strings such as :

{ 2 { _3 I _5 want _7 -i Boston _12 to _13 -d _15
OVE _16 { _22 to _25 { _26 -s like _31 }CITY _48
ST _56 }S

ch corresponds to the insertion (denoted by the
eding symbol -i) of the word Boston after the word
t and the deletion (denoted by -d) of a word at the
 of the non-terminal MOVE, and the substitution
oted by -s) of the word like for a word of the non-
inal CITY (the cost of this edit is 3). It has to be
d that all possible edits of the strings corresponding
he original grammar are allowed by FI, producing
 lots of nonsensical sentences such as the one of the
ious example. The symbols denoted by _N in the

mple (with N being a number) correspond to state
ls. Thus, the string of the previous example carries
information that the insertion of the word Boston is
ted between the nodes labeled as 7 and 12 in the
inal FG, as well as the deletion is between the nodes
led as 13 and 15 and the substitution with the word

 takes place between nodes 26 and 31 . Hence, if we
ted the original grammar to represent the

nsensical) sentence I want Boston to to like, we
ld need to add a terminal arc labeled with the word
ton between the nodes 7 and 12 of FG. Similarly we
d to add an arc between the nodes 13 and 15, and
rc with the word like between nodes 26 and 31.

 next step of the inference algorithm thus consists in
ing all the strings of FI that would match the

uence of words in the new sentence S. To that

:{

New York:New York5

…

:-i-

7

…

:-i-

1 2 3 4
Boston:Boston :}CITY

San Francisco:San Francisco

6:-s-

…

:-d-

re 2: FST resulting from processing rule CITY through
ence algorithm. is the set of all terms (state labels are
ted for simplicity.)

purpose, an FST FS that represents the input sentence S
is then constructed and successively composed with the
inference grammar, resulting in a composed FST FC. FC
represents all the possible modification of G that would
produce the sentence S. Since we are interested in the
minimal set of modifications, an n-best search for the
shortest path (where the length of a path corresponds to
the sum of the weights on the arcs) is conducted on FC.
Typically the n-best return a set of equally scoring
minimal edits, since the same sentence can be accounted
for by different edits (e.g. a sequence substitution-
insertion can also be realized as an insertion-substitution
with the same partial score of 2).

For example, given the sentence “I would like to fly to
Denver please” (note that Denver is not included in the
original vocabulary), the n-best search on FC returns the
set of strings shown in Table 3 (state labels are not
shown for clarity).

All the resulting strings in Table 3 have the same score
(corresponding to the minimal length of 5 edits) and
represent equally reasonable modifications, although
some of them may not be semantically consistent with
the non-terminal structure and may lead to wrong
generalization. Developer should choose the set of
modifications (i.e. the string) that lead to the most
reasonable generalization.

However, the n-best strings resulting from the
composed automaton FC are hard to read and result from
combinatorial expansion of independent modifications,
in other words they present the information in a
redundant manner. In order to present developers with a
more effective view of the suggested modifications and
allow them to choose the best independent ones, a more
compact representation of the strings need to be
attained. An example of compact representation of the
edits of Table 3 is shown in Table 4. Here we divide the
changes into independent groups, and within each group
we assign each change to the non-terminal it pertains.

In order to obtain a compact representation, such as the
one of Table 3, all the n-best strings of FC with the top

sco
dete
dete
the
inde
alte
affe
term
GR
mod
step
rem

Eac
alte
pres

The
iden
whe
exp
sub
der
orig
brac
in t
for
acc
cor
sub
alte
mod
be u

It
pro
the
mod
sen
1, o
sen
inco
Her
sele
re are selected and arranged into an FST that is then
rminized and minimized [10]. Then we need to
rmine the groups of independent modifications, i.e.
portions of the resulting network that group sets of
pendent alternative changes. For example, the

rnative changes grouped under GROUP 1 in Table 3
ct sets of non terminals that do not intersect with the
inal affected by the changes in other groups (e.g.

OUP 2 in Table 3). If independent groups of
ifications exist, the FST resulting from the previous
 include independent nodes, i.e. nodes whose
oval would produce disjoint sub-graphs.

h independent sub-graph represents a set of
rnative modifications to the original rules that are
ented to the developer as in Table 4.

 labels included in the n-best FST, i.e. state and rule
tifiers, rule bracketing, and the information on
ther each terminal is derived from the original rule
ansion, or is considered as an insertion, deletion, or
stitution, are used for transforming the information
ived from the n-best paths into modifications of the
inal grammar. In particular, rule, state id, and rule
keting are used to determine which rule and where

he rule expansion the modification is located. Then,
each insertion a new optional terminal element is

ounted for in the rule, for each deletion the
responding terminal is made optional, and for each
stitution a new terminal element is inserted as an
rnative to the terminal it is substituting. The
ified FG is then converted back into SRGS format to
sed by the recognizer.

can be noticed that, although all modifications
posed by Table 4 are actually providing coverage for

new sentence, some of them would make the
ified grammar over-generalize to incorrect

tences. For instance, among all the choices of group
nly choice number 3 does not generalize to incorrect
tences, while, for instance, choice 1 generalizes
rrectly to phrases such as “ I’d would like to go”.
e is where developers could use their judgment and
ct the better choice for modifying the grammar.
{ { _s I _i would like to _s fly }MOVE { to { -s Denver -i please }CITY }DEST }S
{ { -i I -s would like to -s fly }MOVE { to { -s Denver -i please }CITY }DEST }S
{ { I -s would -i like to -s fly }MOVE { to { -s Denver -i please }CITY }DEST }S
{ { I -i would -s like to -s fly }MOVE { to { -s Denver -i please }CITY }DEST }S
{ { -s I -i would like to -s fly }MOVE { to { -s Denver }CITY -i please }DEST }S
{ { -i I -s would like to -s fly }MOVE { to { -s Denver }CITY -i please }DEST }S
{ { I -s would -i like to -s fly }MOVE { to { -s Denver }CITY }-i please }DEST }S
{ { I -i would -s like to -s fly }MOVE { to { -s Denver }CITY -i please }DEST }S

{ { -s I -i would like to -s fly }MOVE { to { -s Denver }CITY }DEST -i please }S
{ { -i I -s would like to -s fly }MOVE { to { -s Denver }CITY }DEST -i please }S
{ { I -s would -i like to -s fly }MOVE { to { -s Denver }CITY }DEST -i please }S
{ { I -i would -s like to -s fly }MOVE { to { -s Denver }CITY }DEST -i please }S

Table 3: n-best edits with the top score.

As another example of the usefulness of human
supervision in the inference process, consider the
second group of modifications in Table 4. The three
alternatives of Group 2 from Table 3 are equivalent, and
none of them, selected, would over-generalize to
incorrect sentences. The difference between the three
choices is in the placement of the word please
alternatively at the end of the expansion of the rule
CITY, DEST or S. However a skilled grammar writer
would probably select the third choice, which places the
word please as a terminal of the root rule, since the
word please does not belong syntactically or
semantically to neither CITY nor DEST.Once the
developer accepts a modification, the original grammar
is modified accordingly.

3. CONCLUSIONS
A method is presented here for the improvement of
handcrafted context free grammars over a set of
examples outside the current grammar coverage. The
method computes the set of minimal edits with respect to
the original grammar which will account for the new
sentences. and presents them in a compact and readable
manner. Developers can choose among equivalent edits
in order to get a better generalization of the grammar.

The interactive nature of the tool makes a formal
evaluation difficult. It is certainly able to increase the
grammar coverage as well as other inference algorithms,
given the same amount of data. Moreover, maintaining
the original structure makes the resulting grammar
amenable to successive handcrafting and tuning by the
developer. The order of presentation of the rule
modifications to the developer can be made in such a
way that the modification that increase coverage most
(i.e. number of sentences covered by each modification)

wou
the
des
com
tuni

Thi
of
and
Inte
200

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10

GROUP CHOICE RULE
1 MOVE (I'd | I) [would]) like to (go | fly)
2 MOVE [I] (I'd | would) like to (go | fly)
3 MOVE I (want | would like) to (go | fly)

1

4 MOVE
I [would] (want | like) to (go | fly)

1 CITY (Boston | New York | San
Francisco | Denver) [please]

CITY (Boston | New York | San
Francisco | Denver)

2

DEST to $CITY [please]
CITY (Boston | New York | San

Francisco | Denver)

2

3

S $MOVE $DEST [please]

Table 4: Compact representation of grammar edits.
ld appear first, helping improve the effectiveness of
tool. The interactive grammar inference tool

cribed in this paper can be thought of as a basic
ponent of a more sophisticated grammar editing and
ng tool..

4. ACKNOWLEDGMENTS
s work has been partially funded by the Commission
the European Communities under FASiL (Flexible
 Adaptive Spoken Language and Multi-Modal
rfaces - http://www.fasil.co.uk/), contract number IST-
1-38685.

5. REFERENCES
 Barnard, E., Halberstadt, A., Kotelly, C., Phillips, M., “A
Consistent Approach To Designing Spoken-dialog
Systems,” in Proceedings of the Automatic Speech
Recognition and Understanding Workshop, Keystone,
Colorado, December 1999.
Baker, J.K, “Trainable grammars for speech
recognition,” in J.J., Wolf and D. Klatt, editors,
Speech communication papers presented at the 97th

Meeting of the Acoustical Society of America, MIT,
Cambridge, MA, June 1979
Pereira, F., Schabes, Y, “Inside-Outside
reestimation from partially bracketed corpora,” in
Proc. of the Annual Meeting of the ACL, pp 128-
135, 1992
Chelba, C., Jelinek, F., “Structured Language
Modeling,” in Computer Speech and Language,
14(4), pp 283-332, October 2000.
Vidal, E, “Grammatical inference: An introductory
survey,” In R. C. Carrasco and J. Oncina, editors,
Grammatical Inference and Applications, Proc. of
2nd ICGI, volume 862 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1994.
Gold, E., M., “Language Identification in the limit,”
In Information and Control, 10(5), pp 447-474,
1967
W3C Candidate Recommendation: Speech
Recognition Grammar Specification, Version 1.0,
26 June, 2002 - http://www.w3.org/TR/speech-
grammar/
Mohri, M., Pereira, F. C. N., Riley, M,. “Weighted
Finite-State Transducers in Speech Recognition,”
Computer Speech and Language, 16(1):69-88, 2002
Schalkwyk, J., Hetherington L., Story, E., “Speech
Recognition with Dynamic Grammars Using Finite
State Transducers,” ,” in Proceedings of Eurospeech
2003., Geneva (Switzerland), September 2003.

] Mohri. M., Minimization Algorithms for Sequential
Transducers. in Theoretical Computer Science, 234:177-
201, March 2000.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	No Other Papers by the Authors

	footerL1: 0-7803-7980-2/03/$17.00 © 2003 IEEE
	pagenumber572: 572
	footerR1: ASRU 2003
	pagenumber573: 573
	pagenumber574: 574
	pagenumber575: 575
	pagenumber576: 576

