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ABSTRACT
We propose here a method for improving the coverage 
of handcrafted context free grammars based on a set of 
new sentence examples. The described algorithm aims at 
finding the minimal set of modifications to the grammar 
that increase its coverage while preserving its original 
structure. The algorithm is based on a Finite State 
Transducer (FST) representation of context free 
grammars. The inference method includes an interactive 
component that allow developers to control the 
generalization of the new grammar. 

1.  INTRODUCTION 
Most commercial dialog systems are based on hand 
crafted context free grammars (CFGs) that, after 
usability tests and during the initial stages of 
deployment, need to be maintained and modified by the 
developer in order to improve their coverage of the 
language [1]. Since language data (e.g. a corpus of 
transcribed utterances) is typically not available during 
the design and development phases of a dialog system, 
the initial grammars are created by hand with an attempt 
at giving a reasonable coverage. After a series of 
usability tests and  during early deployment, 
transcriptions of the input utterances are becoming 
available periodically, a portion of which are not 
covered by the initial grammars. It is the job of the 
developer to analyze the transcriptions and modify the 
grammars accordingly. As the number of deployed 
applications and the number and size of grammars used 
in those applications grows, so do the development and 
maintenance costs.  

Speech application developers and user interface 
specialists are trained to build grammars with 
reasonable generalization capabilities. For example, 
given the sentence “I’d like to go to Boston”, a speech 
application developer would produce a grammar that 
would also cover sentences with similar semantic 
structure, such as “I want to go to New York”, or “I am 
going to San Francisco”. A very simple grammar that 
covers these sentences is shown in Table 1 (with the 
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bol “|” representing disjunction). However, this 
mar does not have any generalization capability, 

it will not be able to cover other sentences than those 
nging to the original set. For instance, the grammar 
able 1 will not cover slight variations obtained by 
binatorial permutations of the words and phrases in 
original set, such as “I want to go to Boston”.  
eralization is usually achieved by giving structure to 
grammar based on the developer’s insight of the 
, the user interface, and the underlying language. 
cture is obtained, in CFG formalism, by arranging 
grammar rules into a set of non-terminals which 
w for a modular design of the language. For 
ance, for the above examples, one could think of a 
of terminals such as MOVE, DEST and CITY. The 

mar shown in Table 2, based on these non-terminal 
s, allows for a good degree of generalization and 
ers a larger number of variations of the original set 

entences. 

 task of creating and improving grammars from 
erved data can be automated with the help of 
matic grammar inference algorithms. Many of these 
rithms exist in the literature based on a purely 

istical representation of formal languages, such as 
inside-outside algorithm [2][3] , or on the 

bination of structured and stochastic models [4].  
ertheless, statistically based grammar inference 
rithms are generally very slow and require very 

 =  MOVE DEST  
OVE = (I’d like to go | I want to go | I am going)
EST = to CITY 
ITY = (Boston|New York|San Francisco,...) 

able 2: Example of a structured CFG 

 =  (I’d like to go to Boston | 
      I want to go to New York | 
      I am going to San Francisco)  

able 1: Example of an unstructured CFG 
ammar



large amounts of data, possibly annotated. In contrast, 
after usability test or early deployment, developers can 
rely only on a small set of sentences, generally on the 
order of a few hundred. 

Some structured grammar inference algorithms, such as 
the Error Correcting Grammatical Inference (ECGI) 
algorithm [5]  are more parsimonious and can be used to 
infer finite state grammars able to generalize over a set 
of examples. However, one of the drawbacks with 
automatically inferred grammars of this kind, is that 
they do not have structure, thus are hardly human 
readable, hence they are not easy to be modified and 
improved by hand. In this context it must be pointed out 
that hand tuning of applications is still a common 
procedure for improving the performance of commercial 
dialog systems.  

Another issue with automatic inference of natural 
language grammars is generalization. Most of the 
learning algorithms tend to generalize in an uncontrolled 
way,  partly because of the difficulty in providing the 
learning algorithm with a set of  negative examples that 
would control over-generalization [6]. Thus, inferred 
grammars generally over-generate with respect to the 
underlying language, a property that is not desirable 
because it may reduce the constraining power of the 
speech recognizer, hence its accuracy.   

We should also take into consideration that grammars 
are used in dialog systems not only for  constraining  the 
speech recognizer, but also for producing utterance 
interpretations. The common way of generating 
interpretation consists in augmenting the grammar with 
scripts (consisting of variable assignments in the 
simplest case) that would generate sets of key-value 
pairs from the parse tree. The use of scripts (typically in 
ECMA script languages, such as JavaScript, or a subset 
of them) for extracting semantic information is 
supported by a W3C candidate recommendation [7] and 
adopted today by most commercial speech recognizers. 
Thus, when new rules are added to the grammar, 
developers need to make sure that the scripts that 
generate the semantic information are still valid, 
possibly modifying them in order to account for the new 
rules. This argument contributes to the motivations for 
investigating supervised methods apt at increasing the  
coverage of grammars over a set of new examples, with 
the developer part of the training loop and controlling 
the process of grammar learning.  

The method we will describe in this paper attempts at 
finding and suggesting a set of changes to the original 
grammar that would increase its coverage over a set of 
sample transcriptions, while maintaining the context 
free structure initially created by the developer. The 
developer would have the choice of accepting or 
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cting those changes. The proposed method would 
 allow the use of automatic grammar inference for an 
mal modification of the grammar based on an 
osed non-terminal structure, while leaving the choice 
evelopers of modifying the grammar according to 

r understanding of the domain.

2. THE INFERENCE ALGORITHM 
 problem of improving the grammar coverage of an 
ting CFG can be formalized as follows. Given a 
text free grammar G and an input sentence S that is 
accepted by G, we want to find the minimal set of 
ifications to the grammar that would allow it to 

ept S. The minimal set of modifications is intended in 
s of minimal edit (or Levenshtein) distance between 

original grammar G and the improved grammar G’, 
 it is defined as the number of substitutions, 
rtions and deletions of terminals performed on the 
s of G in order to obtain G’. 

order to apply conventional search techniques for 
ing the minimal set of edits, it is convenient to 
vert the standard SRGS [7] grammar into an 
ivalent finite state transducer (FST) [8][9]. Notice 
 this operation is possible only if the original CFG 
 be represented by finite state machine, i.e. it does 
have  CFG rules with embedded recursion; most 
mercial recognizer explicitly forbid rules with 
edded recursion.   

s transformation of a CFG to a FST generally does 
preserve the original non-terminal structure. In order 
nclude and preserve non-terminal information into 
FST we need to add nodes and arcs with the purpose 
on terminal, or rule boundary labels. Labels  can be 
uded in an FST by adding an arc with the null 
bol as input and the label in question as output. The 
l will be then propagated to any FST resulting from 
arbitrary  composition operation with the current 
.    

example of FST representation of a CFG with rule 
ndary labeling is shown in Figure 1, where the CITY 
tion of the CFG of Table 2 is represented. The 

ork described in Figure 1 follows the usual 
ventions for FSTs, i.e. the arcs are labeled with 
t:ouput symbols, with  representing the null 
bol. The arc labeled as :{ represent the left 
ndary of the rule, while the arc labeled as :}CITY 
esent the right boundary and the name of the rule. 
 above described FST (FG) includes thus all the 
ctural information of the original CFG G.  

rder to search for the minimal edit that would allow 
arse the new sentence S, we will augment FG with 
 and nodes that would represent all possible edit 



operations. The augmented inference FST will be 
denoted by FI . However, we need to maintain a 
mapping between the new arcs and nodes of FI, which 
correspond to edit operations, and the original FG, in 
order to be able to apply the final modifications to G.  
This is done by augmenting FI with label arcs with the 
intent of marking the original state labels of FG. Doing 
so we will have, in  FI, the necessary information that 
allows us to map any selected modification of FI to the 
corresponding nodes of FG (and then to G). 

If any word appears in S that is not accounted for by the 
original grammar’s set of terminals, the word is added to 
the FST vocabulary.   

As we discussed earlier, FI represents all the possible 
strings that can be obtained from FG by arbitrary 
substitution, deletion, or insertion of terminal symbols.  
All the edit operations are restricted to within the rule 
boundaries, that is to say, no insertions are allowed 
across rules.  

Let’s define as terminal arc an arc of FI whose 
input/output symbols are not labels, but rather terminal 
symbols of the corresponding CFG grammar.  Let’s also 
define as terminal node any node of  FI connected, 
either to the left or to the right, to at least one terminal 
arc.  Insertions, in the resulting FI,  are thus accounted 
for by adding, to each terminal node, a number of arcs 
equal to the number of words in the dictionary. Each arc 
would have input/output symbols corresponding to each 
of all the possible words. This is represented 
symbolically in Figure 2 by the loop arcs labeled by :
(where  is the set of all possible words). Deletion and 
substitution of words is accounted for by inserting a 
number of arcs equal to the number of words in the 
vocabulary, including the null symbol , in parallel to 
any terminal arc.  The resulting FST would match any 
string obtained by G by applying an arbitrary number of 
the above defined edit operations. Since, for suggesting 
modifications to G,  we are interested in knowing if an 
arc corresponds to an insertion, deletion, or substitution 
(with respect to the original grammar), we then label the 
modification arcs accordingly (i.e. we add label arcs to 
the leftmost connection of every insertion, substitution 
and deletion arc.)  Also, for computing the edit distance, 
we  associate a weight w=1 to each insertion, 
substitution and deletion arc (while the arcs of the 
original grammar have weight w=0). An example of the 
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:{ Boston:Boston :}CITY 

New York:New York 

San Francisco:San Francisco 

Figure 1: FST representation of rule CITY with rule 
boundary labels 

Figu
infer
omit
lting transducer is shown in Figure 2 for the  non-
inal rule CITY of the sample grammar (state labels 

omitted for clarity).  

s FI would represent strings such as : 

{ 2 { _3 I _5 want _7 -i Boston _12 to _13 -d _15 
OVE  _16 { _22 to _25 { _26 -s like _31 }CITY _48 
ST _56 }S 

ch corresponds to the insertion (denoted by the 
eding symbol -i) of the word Boston after the word 
t and the deletion (denoted by -d) of a word at the 
 of the non-terminal MOVE, and the substitution 
oted by -s) of the word like for a word of the non-
inal CITY (the cost of this edit is 3). It has to be 
d that all possible edits of the strings corresponding 
he original grammar are allowed by FI, producing 
 lots of nonsensical sentences such as the one of the 
ious example. The symbols denoted by _N in the 

mple (with N being a number) correspond to state 
ls. Thus, the string of the previous example carries 
information that the insertion of the word Boston is 
ted between the nodes labeled as 7 and 12 in the  
inal FG, as well as the deletion is between the nodes 
led as 13 and 15 and the substitution with the word 

 takes place between nodes 26 and 31 . Hence, if we 
ted the original grammar to represent the 

nsensical) sentence I want Boston to to like,  we 
ld need to add a terminal arc labeled with the word 
ton between the nodes 7 and 12 of FG.  Similarly we 
d to add an  arc between the nodes 13 and 15, and 
rc with the word like between nodes 26 and 31. 

 next step of the inference algorithm thus consists in 
ing all the strings of FI that would match the 

uence of words in the new sentence S.  To that 

:{

New York:New York5

…

:-i-

7

…

:-i-

1 2 3 4
Boston:Boston :}CITY

San Francisco:San Francisco

6:-s-

…

:-d-

re 2: FST resulting from processing rule CITY through 
ence algorithm.  is the set of all terms (state labels are 
ted for simplicity.)



purpose, an FST FS that represents the input sentence S 
is then constructed and successively composed with the 
inference grammar, resulting in a composed FST FC. FC
represents all the possible modification of G that would 
produce the sentence S. Since we are interested in the 
minimal set of modifications, an n-best search for the 
shortest path (where the length of a path corresponds to 
the sum of the weights on the arcs) is conducted on FC. 
Typically the n-best return a set of equally scoring 
minimal edits, since the same sentence can be accounted 
for by different edits (e.g. a sequence substitution-
insertion can also be realized as an insertion-substitution 
with the same partial score of 2).  

For example, given the sentence “I would like to fly to 
Denver please” (note that Denver is not included in the 
original vocabulary), the n-best search on FC returns the 
set of strings shown in  Table 3 (state labels are not 
shown for clarity). 

All the resulting strings in Table 3 have the same score 
(corresponding to the minimal length of 5 edits) and 
represent equally reasonable modifications, although 
some of them may not be semantically consistent with 
the non-terminal structure and may lead to wrong 
generalization. Developer should choose the set of 
modifications (i.e. the string) that lead to the most 
reasonable generalization. 

However, the n-best strings resulting from the 
composed automaton FC are hard to read and result from 
combinatorial expansion of independent modifications, 
in other words they present the information in a 
redundant manner. In order to present developers with a 
more effective view of the suggested modifications and 
allow them to choose the best independent ones, a more 
compact representation of the strings need to be 
attained. An example of compact representation of the 
edits of Table 3 is shown in Table 4. Here we divide the 
changes into independent groups, and within each group 
we assign each change to  the non-terminal it pertains.   

In order to obtain a compact representation, such as the 
one of Table 3, all the n-best strings of FC with the top 
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re are selected and arranged into an FST that is then 
rminized and minimized [10]. Then we need to 
rmine the groups of independent modifications, i.e. 
portions of the resulting network that group sets of 
pendent alternative changes. For example, the 

rnative changes grouped under GROUP 1 in Table 3 
ct sets of non terminals that do not intersect with the 
inal affected by the changes in other groups (e.g. 

OUP 2 in Table 3).  If independent groups of 
ifications exist, the FST resulting from the previous 
 include independent nodes, i.e. nodes whose 
oval would produce disjoint sub-graphs.  

h independent sub-graph represents a set of 
rnative modifications to the original rules that are 
ented to the developer as in Table 4. 

 labels included in the n-best FST, i.e. state and rule 
tifiers, rule bracketing, and the information on 
ther each terminal is derived from the original rule 
ansion, or is  considered as an insertion, deletion, or 
stitution, are used for transforming the information 
ived from the n-best paths into modifications of the 
inal grammar. In particular, rule, state id, and rule 
keting are used to determine which rule and where 

he rule expansion the modification is located. Then, 
each insertion a new optional terminal element is 

ounted for in the rule, for each deletion the 
responding terminal is made optional, and for each 
stitution a new terminal element is inserted as an 
rnative to the terminal it is substituting. The 
ified FG is then converted back into SRGS format to 
sed by the recognizer.  

can be noticed that, although all modifications 
posed by Table 4 are actually providing coverage for 

new sentence, some of them would make the 
ified grammar over-generalize to incorrect 

tences. For instance, among all the choices of group 
nly choice number 3 does not generalize to incorrect 
tences, while, for instance, choice 1 generalizes 
rrectly to phrases such as “ I’d would like to go”. 
e is where developers could use their judgment and 
ct the better choice for modifying the grammar.  
{ { _s  I _i would like to _s fly }MOVE { to { -s Denver  -i please }CITY }DEST }S 
{ { -i  I -s would like to -s fly }MOVE { to { -s Denver  -i please }CITY }DEST }S 
{ { I -s would -i like to -s fly }MOVE { to { -s Denver  -i please }CITY }DEST }S 
{ { I -i would -s like to -s fly }MOVE { to { -s Denver  -i please }CITY }DEST }S 
{ { -s  I -i would like to -s fly }MOVE { to { -s Denver  }CITY -i please }DEST }S 
{ { -i  I -s would like to -s fly }MOVE { to { -s Denver  }CITY -i please }DEST }S 
{ { I -s would -i like to -s fly }MOVE { to { -s Denver  }CITY }-i please }DEST }S 
{ { I -i would -s like to -s fly }MOVE { to { -s Denver  }CITY -i please }DEST }S 

{ { -s  I -i would like to -s fly }MOVE { to { -s Denver  }CITY  }DEST -i  please }S 
{ { -i  I -s would like to -s fly }MOVE { to { -s Denver  }CITY  }DEST -i  please }S 
{ { I -s would -i like to -s fly }MOVE { to { -s Denver  }CITY  }DEST -i please }S 
{ { I -i would -s like to -s fly }MOVE { to { -s Denver  }CITY }DEST -i please }S 

Table 3: n-best edits with the top score.



As another example of the usefulness of human 
supervision in the inference process, consider the 
second group of modifications in Table 4.  The three 
alternatives of Group 2 from Table 3 are equivalent, and 
none of them, selected, would over-generalize to 
incorrect sentences. The difference between the three 
choices is in the placement of the word please
alternatively at the end of the expansion of the rule 
CITY, DEST or S. However a skilled grammar writer 
would probably select the third choice, which places the 
word please as a terminal of the root rule, since the 
word please does not belong syntactically or 
semantically to neither CITY nor DEST.Once the 
developer accepts a modification, the original grammar 
is modified accordingly. 

3. CONCLUSIONS 
A method is presented here for the improvement of 
handcrafted context free grammars over a set of 
examples outside the current grammar coverage. The 
method computes the set of minimal edits with respect to 
the original grammar  which will account for the new 
sentences. and presents them in a compact and readable 
manner. Developers can choose among equivalent edits 
in order to get a better generalization of the grammar. 

The interactive nature of the tool makes a formal 
evaluation difficult. It is certainly able to increase the 
grammar coverage as well as other inference algorithms, 
given the same amount of data. Moreover, maintaining 
the original structure makes the resulting grammar 
amenable to successive handcrafting and tuning by the 
developer. The order of presentation of the rule 
modifications to the developer can be made in such a 
way that the modification that increase coverage most 
(i.e. number of sentences covered by each modification) 
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[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10

GROUP CHOICE RULE 
1 MOVE (I'd | I) [would]) like to (go | fly)
2 MOVE [I] (I'd | would) like to (go | fly)
3 MOVE I (want | would like) to (go | fly)

1

4 MOVE 
I [would] (want | like) to (go | fly)

1 CITY (Boston | New York | San 
Francisco | Denver) [please]

CITY (Boston | New York | San 
Francisco | Denver)

2

DEST to $CITY  [please]
CITY (Boston | New York | San 

Francisco | Denver)

2

3

S $MOVE $DEST [please]

Table 4: Compact representation of grammar edits. 
ld appear first, helping improve the effectiveness of 
tool. The interactive grammar inference tool 

cribed in this paper can be thought of as a  basic 
ponent of a more sophisticated grammar editing and 
ng tool..  
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