
It SS =
while

Ft SS ≠ {

)(NextAction tt SA =
 invoke

tA

tO = environment response to
tA

),,NextState(1 tttt OASS =+

 1+= tt
}

Figure 1: Dialogue as a sequential process

SPOKEN LANGUAGE DIALOGUE:
FROM THEORY TO PRACTICE

Esther Levin, Roberto Pieraccini,
Wieland Eckert, Pino Di Fabbrizio, Shrikanth Narayanan

{esther,roberto,eckert,pino,shri}@research.att.com

AT&T Labs-Research, 180 Park Avenue
Florham Park, NJ

ABSTRACT
A spoken language dialogue system is composed of many parts:
speech recognition, speech synthesis, natural language
understanding, dialogue manager, database, etc. Building a
spoken language system for a new application requires in general
a big effort for integrating all these parts, in addition to the effort
required for designing, testing and tuning the dialogue behavior.
This is especially true when complex dialogue tasks are built
based on a mixed initiative paradigm. The approach suggested in
this paper consists in shaping both the overall general
architecture as well as the particular dialogue strategy as
sequential decision processes. We discuss the concepts of stateful
and stateless dialogue managers and we introduce a scripting
language, DMD, which supports both. Finally we conclude with
the description of the dialogue manager implemented for the
DARPA Communicator multi l eg travel task.

1. DIALOGUE AS A SEQUENTIAL DECISION
PROCESS

A dialogue system can be formalized as a sequential decision
process in terms of its state space, the set of possible actions, and
the strategy [5][7]. The state space is defined by the collection of
all variables that characterize the state of the dialogue system at a
certain point in time. The set of actions describes what the
system can do, i.e. the set of functions the system can invoke at
any time (e.g. play a certain prompt, query a database, hang up,
etc.). The strategy is a mapping between the state space and the
action set. For any possible state the strategy prescribes what is
the next action to perform. As a result of the action and its
interaction with the external environment (e.g. user, database,
etc.) the system gets some new observations (e.g. output of ASR,
database tuples, etc.). The new observations are registered and
modify the state of the system. This process continues until a
final state is reached (e.g. the state after hang up in a telephone
interaction). Following this formalization, the process of a
dialogue system can be summarized by the algorithm in Fig. 1.

The system starts in the initial state IS . tS denotes the system

state at turn t. The function NextAction determines the next

action tA to be invoked, and the function NextState updates the

state variables with the external observations. The process is
repeated until a final state FS is reached.

2. THE AMICA DIALOGUE ARCHITECTURE

In this section we show how the sequential decision process
formalization was implemented in the AT&T dialogue
architecture and toolkit (AMICA [8]).

2.1 The Dialogue State

The dialogue state in the AMICA architecture is represented by a
recursive key/value data structure. We call this structure
template. A template can be easily mapped to similar data
structures such as the Galaxy frames [6] used by MIT and
constituting the standard for the DARPA Communicator [9]
architecture.

2.2 Dialogue Actions

The action set of the dialogue system includes all possible
actions it can perform, such as interactions with the user (e.g.
asking the user for input, providing a user some output,
confirmations, etc.), interactions with other external resources
(e.g. querying a database), and internal processing. In our
architecture an action is a function that reads a template, possibly
interacts with the environment, and returns a modified template.
Of course actions can be defined at different levels of granularity.
For example an action corresponding to the interaction with a
user can be broken into separate lower level actions, including
generating the prompt, activating the speech synthesizer,
activating the speech recognizer with appropriate grammars,
getting input from the speech recognizer, and parsing it.
It would be desirable to have a small set of generic high level
parametric dialogue actions that could be used in any dialogue
system. Indeed we can define a set of high-level abstract dialogue
actions, or dialogue acts, such as confirmation, constraining,

DIALOGUE
PROCESS

1+→ tt SS

tI tO

a)

DIALOGUE
PROCESS

tO

b)

tI

1+tStS

Figure 2: Stateful (a) and stateless (b) dialogue
processes

relaxation, etc. But our experience showed that it is not possible
to achieve a satisfactory application independent
parameterization of such abstract high level dialogue actions. In
fact any application requires fine-tuning of the strategy, and it is
not possible to define a reasonably simple parametric form of
dialogue actions that will allow for that. The solution we adopted
consists of implementing a set of elemental actions (e.g. Input,
Output, simple state editing operations, flow control, etc.) that
can be used as building blocks for more complex actions. A
scripting language (DMD) was developed both for building
dialogue actions as well as for scripting the strategy.

2.3 DMD – the Dialogue Manager Developer
scripting language

DMD is a scripting language that can be used both for building
dialogue actions as well as for building the dialogue strategy.
Other dialogue actions (see [8]) can be invoked within a DMD
script. The interpreter reads the initial state of the dialogue,
executes the script, and returns the final state before the process
ends. Therefore a DMD script conforms to our definition of
dialogue action, and can be invoked as a higher level action by
another script. DMD also includes flow control statements (if,
while, for, foreach, etc.) conditioned on the current state that are
used to specify the dialogue strategy.

The advantages of DMD are:
- the concept of state is embedded in the language.
- DMD allows the use of high level operations.
- a DMD script can run either in stateless or stateful mode.

2.3.1 Stateful and Stateless modes
A dialogue manager can often be used in architectures that
support a persistent connection between it and the rest of the
modules. This corresponds to a stateful operation, i.e. the
dialogue manager process will exist for the whole duration of the
interaction, and it will maintain the evolving dialogue state at any
time from the beginning to the end of the current session. This
situation is summarized by Fig. 2a. The dialogue process is in

state tS . When input tI is received by some other module, the

dialogue process generates the output tO while changing its

internal state to 1+tS .

However, in several architectural situations it is not possible to
guarantee the persistence of the dialogue process. For example in
a web interaction based on the cgi protocol, for each single turn
of interaction with a client browser a new dialogue process is
started on the web server. Another example is the MIT Galaxy
Hub architecture [6][9] on which the DARPA Communicator
process is based. The Hub is a central router that allows
communication among a set of (possibly) stateless servers. The
Hub is the only process in the whole architecture that is
guaranteed to maintain the state of the system. In these cases the
dialogue manager process cannot maintain the state. Thus the

process (Fi.g 2b) has to be able to read the previous state tS

along with the input information tI , and return the new state

1+tS and the output tO before terminating. The new state 1+tS
is then stored temporarily somewhere else (e.g. in the client
browser, in the Hub, in a local database, etc.), before it is sent to
a new dialogue manager process that is handling the next
interaction.

In order to have the dialogue manager act as a stateless server,
one has to manage the bookkeeping of the information to send to
the external temporary state repository in order to be able to
resume the process seamlessly at the next interaction. Practically
the script describing the whole strategy has to be resumed from
the exact point it was suspended at the previous turn. The DMD
interpreter does this automatically. The same script can run,
transparently to the designer, in stateful or in stateless mode.
When the DMD interpreter runs in stateless mode and executes a

statement causing the suspension of the current flow (e.g. an
output statement), it sends the state (including all the necessary
information about the current process, e.g. program counter,
stack, values of local and global variables, etc.) to the call ing
process (e.g. the cgi script). When the client process invokes the
dialogue manager, a new DMD interpreter process is started, the
state information is read, and the DMD interpreter reaches the
point in the script successive to the last executed statement at the
previous turn.
The size of the state for a typical DMD strategy running in
stateless mode (e.g. the one managing the travel application
described later) is of the order of 3 to 6 Kbytes.

2.4 The Dialogue System Architecture

Fig. 3 shows the overall architecture of the system. A T1 ISDN
line is connected to the computer telephony platform (Dialogic
based ECTF-compliant CT-media platform). Special software
[10] has been included in the telephony platform in order to
handle both the speech recognizer and the text-to-speech in an
asynchronous manner, thus allowing barge-in. The telephony
manager acts as broker. It gets events from the underlying
telephony resources, such as recognition results and telephony
status (e.g. hang-up, call transferred, etc.), converts them into a
template structure, and dispatches them to the DMD interpreter.
Conversely, when a template is received from the DMD

CT-media

ASR
TTS

NLU

TELEPHONY
MANAGER

DMD
Interpreter

� �

DATABASE
INTERFACE

� � � � � � � �
	
 � � � 	
 �
 � HTTP

INTERFACE

� � � � � � � � �
� � � � � � � � � �

DMD
Script

Figure 3: The Dialogue System Architecture

interpreter, the telephony manager looks for information like
prompts for TTS, grammars for the recognizer, telephony
commands, and sends them to the telephony platform.

The dialogue strategy is coded in the DMD script. The DMD
language includes special Exec functions that allow for starting
and communicating synchronously with external servers. In Fig.
3 we show a natural language understanding server (based on
CHRONUS [1]) and a database interface server. The database
interface server converts a query semantically expressed by a
template into a SQL query, sends it to a relational database
server, formats the result as a template, and sends it back to the
DMD interpreter.

The DMD interpreter, in this architecture, acts as a server. Each
time it is invoked for a new transaction by the telephony
manager, it forks a new process that will be active for the whole
duration of the dialogue. The same server can be invoked in
stateless mode by including the proper control sequence in the
initial state template. This is especially useful for text based web
interactions. In that case the http interface (a cgi script running
on a web server) invokes a new DMD process that is forked by
the DMD interpreter. The output state is then sent and stored by
the browser. At the next turn a new DMD process is invoked
with the previous state from the browser.

In this architecture, all the asynchronous events are managed by
the telephony platform. The dialogue manager and the other
processes it invokes (e.g. natural language understanding) are
invoked in a synchronous manner, assuming their processing
time is negligible. If the database server delay becomes
significant, it should be invoked asynchronously by the telephony
platform directly, thus allowing detection of user events (barge-
in) while data is accessed.

An alternative architecture, compliant with the DARPA
Communicator[9] project, can be obtained with minor changes in
the components, as shown in Fig. 4. The Hub is an asynchronous
router that receives/sends messages from/to the servers in the
form of key-value pairs. The routing function of the Hub is
scriptable. In this case the DMD interpreter is always working in
stateless mode. When it receives a message (converted into a
template format), it processes it according to the DMD script and
sends the result back to the Hub, including the current state, so
that at the next iteration the script is resumed from the very same
point it was left.

3. THE TRAVEL SYSTEM

The travel dialogue1 system consists of a planning agent for
making flight, car, and hotel reservation for multi -leg trips. A
typical interaction is shown in Table 1.

3.1 The Strategy

For an effective interaction with the user we adopted a mixed
initiative dialogue strategy where the system guides the user by
asking questions about specific attributes of the task (e.g. origin,
destination, etc.), but at the same time allows for the user to
provide more information than the one requested, i.e. the user can
provide additional information or correct previously supplied
attributes.

Mixed initiative strategies differ form the traditional prompt
based or system initiative strategy adopted in IVR and simple
voice applications.

A prompt based dialogue strategy can be represented as a tree
where each node corresponds to a system prompt, the root
corresponding to the initial system prompt (e.g. greetings). Each
node branches out with each possible semantically different user
response. For example a node corresponding to the question
Would you need a hotel in Boston? has two branches, one that
corresponds to a negative answer and leads, for instance, to the
prompt Do you need a car in Boston?, and one corresponding to
a positive answer leading to the prompt Would you like a
downtown or airport hotel?.

A prompt based dialogue strategy is usually implemented as a
program consisting of nested if/elseif statements. A prompt-based
strategy is suitable for simple system initiative tasks where the
number of semantically different answers is limited at each point.

In a mixed initiative dialogue, instead, the number of possible
user inputs is virtually unlimited at any time. Implementing a
mixed initiative strategy in a prompt-based manner will result in
a prohibitively complex program that is hard or impossible to
write and debug. Instead we adopted the sequential decision
process model (Fig. 1) for implementing the mixed initiative
dialogue, resulting in a significant simpli fication of the program
representing the strategy. In this approach the dialogue strategy is

1 http://www.research.att.com/~roberto/communicator_web/main.html
for more information about the travel system.

CT-media

ASR
TTS

NLU

TELEPHONY
MANAGER

DMD
Interpreter

� �

DATABASE
INTERFACE

DMD
Script

HUB

Figure 4: The Communicator compliant architecture

specified by two functions of the dialogue state as shown in
Fig.1, i.e. NextAction and NextState.

In the travel task the state is represented mainly by an itinerary
template that keeps relevant information for each leg of the trip.
The NextAction function examines the itinerary entries
corresponding to the current leg and determines which is the
appropriate prompt to invoke. For example, if the origin of the
flight is not in the itinerary for the current leg, the next action is
the question What is your departure airport?. When all the
necessary attributes to select a flight (i.e. origin, destination, date,
and time) are fill ed in the itinerary for the current leg, but the
flight information is not there, the next action chosen by
NextAction is a database query.

The order in which NextAction checks for missing information in
the itinerary template is fixed by the strategy script, but the actual
order of prompts to the results from the information actually
provided by the user. For example, if after a prompt asking for
departure city the user specifies, in addition, also the destination,
the date and the preferred time, the next action of the system will
be database retrieval of the appropriate flight. If the user, instead,
always provides just the information that was asked by the
system, the dialogue proceeds in a system initiative manner
through all the prompts in the prescribed order.

The NextState function updates the itinerary template with the
current information obtained from the user in the context of the
previous prompt. For example if the user says San Francisco and
the previous question Where are you flying to? it will update the
field destination in the itinerary template. The NextState function
handles naturally user initiative by filli ng the appropriate slots in
the itinerary template.

Most of mixed initiative dialogue systems are implemented using
a sequential decision approach, such as [2][3][4][6][8].

Notice that while the prompt based strategy can be represented
by a tree, the sequential decision process based strategy is
represented by the loop of Fig. 1. The same dialogue behavior
can be obtained with both strategies, with different resulting
complexity of the implementation. In fact, unwrapping the loop
of a sequential decision process will result in the tree of the
prompt based strategy.

4. CONCLUSIONS

We showed how the abstract sequential decision process model
of a dialogue system was used both for designing dialogue
architecture as well as for implementing a mixed initiative
dialogue strategy.

REFERENCES

[1] Pieraccini, R., Levin, E., “A learning approach to natural
language understanding, ” in NATO-ASI, New Advances &
Trends in Speech Recognition and Coding, Springer-Verlag,
Bubion (Granada), Spain, 1993.

[2] Stallard, D., “The BBN ATIS4 Dialogue System,” Proc. of
1995 ARPA Spoken Language Systems Technology
Workshop, Austin Texas, Jan. 1995.

[3] Abella, A., Brown, M.K., Buntschuh, B.,”Development
Principles for Dialogue-Based Interfaces,” Proc. Of
European Conference on Artificial Intelli gence, Budapest,
Hungary, 1996.

[4] Lamel L. et al. “The LIMSI RailTel System: Field Trials of
a Telephone Service for Rail Travel Information,” Speech
Communication, 23 pp.67-82, October 1997.

[5] Levin, E., Pieraccini, R., Eckert, W., “Using Markov
Decision Process for Learning Dialogue Strategies, “ Proc.
ICASSP 98, Seattle, WA, May 1998

[6] Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., Zue,
V., “Galaxy-II : A Reference Architecture for
Conversational System Development, “ Proc. ICSLP 98,
Sydney, Australia, November 1998.

[7] Levin, E., Pieraccini, R., Eckert, W., “A Stochastic Model
of Human-Machine Interaction for Learning Dialogue
Strategies, “ to appear in IEEE Trans. on Speech and Audio
Processing, January 2000.

[8] Pieraccini, R., Levin, E., Eckert, W., “AMICA, the AT&T
Mixed Initiative Conversational Architecure,” Proc. of
EUROSPEECH 97, Rhodes, Greece, September 1997,

[9] DARPA Communicator: http://fofoca.mitre.org
[10] G. Di Fabbrizio, C. Kamm , P. Ruscitti , S. Narayanan, B.

Buntschuh, A. Abella, J. Hubbell , J. Wright “Extending a
Standard-based IP and Computer Telephony Platform to
Support Multi -modal Services, “ Proc. of ESCA Tutorial
and Research Workshop on INTERACTIVE DIALOGUE IN
MULTI-MODAL SYSTEMS, Kloster Irsee, Germany - June
22 -25, 1999.

[11] Dialogic CT Media:
http://www.dialogic.com/products/ctmedia

Welcome to AT&T Communicator. Please say your departure
airport.
I am leaving from Denver
Leaving from Denver. Where are you going?
Going to San Francisco
Flying to San Francisco. What date do you want to fly?
Hum?
I need to reconfirm the following information. Please answer
yes or no. Are you flying to San Francisco?
Yes
Please tell me the date of your flight.
It is August first late in the morning.
This is the closest flight I have found: United Airlines flight
1521 departs Denver at 11 28 AM and arrives San Francisco
International at 1 15 PM. Do you confirm this flight?
Yes
Will you need a hotel?
Yes a hotel downtown
Will you need a rental car?
 No thanks
Are you going back to Denver?
Yes
What date do you want to fly?

Table 1: Example of interaction with the travel
system

