
Learning Dialogue Strategies within the Markov 
Decision Process Framework 

Esther Levin, Roberto Pieraccini, Wieland Eckert 

AT&T Labs-Research, 
180 Park Avenue, Florham Park, NJ 07932-097 1, USA 

(esther I roberto I eckert)@research.att.com 

Abstract - In this paper we introduce a stochastic model for dialogue systems based on 
Markov decision process. Within this framework we show that the problem of dialogue 
strategy design can be stated as an optimization problem, and solved by a variety of 
methods, including the reinforcement learning approach. The advantages of this new 
paradigm include objective evaluation of dialogue systems and their automatic design 
and adaptation. We show some preliminary results on learning a dialogue strategy for an 
Air Travel Information System. 

1. I ~ ~ ~ O D U C T I O ~  
Recent progress in the field of spoken natural language understanding [ I ]  expanded 
the scope of spoken language systems to include mixed initiative [l-5, 71. Currently 
there are no agreed upon theoretical foundations for the design of such systems. 
Looking at the history of speech recognition research and the tremendous progress 
due to the introduction of a computational model such as HMM, we believe that 
dialogue research could greatly benefit from a principled theoretical and 
computational description of the problem. 
In this work we define a dialogue system as a system that tries to achieve an 
application goal in an eflcient way through a series of interactions with the user. We 
show that by quantifying the terms eflciency and achievement of application goal in 
terms of an objective function, the dialogue system can be described as a known 
stochastic model - Markov Decision Process (MDP) - that can be used for learning 
the dialogue strategy for a given application. 
The advantages of this new paradigm include objective evaluation of dialogue 
systems and their automatic design and adaptation. 
We show some preliminary results on learning a dialogue strategy for an Air Travel 
Information System. 

2. DIALOGUE SYSTEM AS A MARKOV DECISION 
PROCESS 

In this section we will give a formal definition of a dialogue system. For clarity, we 
will illustrate it with a very simple tutorial example of Day-and-Month Dialogue, 

0-7803-3698-4/97/$10.00 0 1997 EEE. 72 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 

mailto:eckert)@research.att.com


where the goal of the system is to get the correcr day and month values from the user 
through the shortest possible interaction. 

We formalize a dialogue system by describing it in terms of a state space, an action 
set, and a strategy. 
The state of a dialogue system represents all the knowledge the system has about 
internal and external resources it interacts with (e.g. remote databases or machinery, 
user input, etc.). For our simple tutorial example, the state of the system includes 
only two entries: the day and the month, whose values can be either empty, or filled 
through interaction with the user. The total number of states is 41 1, including one 
emlpty initial state, 12 states for which the month is filled and the day isn’t, 31 states 
in which the day is filled, but not the month, 366 states with complete dates, and a 
special final empty state. 
The action set of the dialogue system includes all possible actions it can perform, 
such as interactions with the user (e.g. asking the user for input, providing a user 
some output, confirmations, etc.), interactions with other external resources (e.g. 
querying a database), and internal processing. 
For our example, the action set include only four actions: 
1. 
2. 
3. 
4. 
In actions 1 , 2  and 3, the system asks the appropriate question, and activates a speech 
recognition system to obtain the user’s answer. 
When an action a is taken at state s, the system’s state changes to be s’. For the day- 
antl-month example, when the system is in an initial state and it asks the user for the 
month, the next state depends on the actual answer of the user as well as on the 
speech recognition performance of the system, and it can be any one among the 12 
states in which the month is filled, but the day is not. The state transitions are 
modeled by transition probabilities PT( s(t+l) = s’ I s(t) = s, a(t) = a  ). 
A dialogue session corresponds to a path in the state space starting at the initial state 
and ending at a final state. 
A dialogue strategy specifies, for each state reached, what is the next action to be 
invoked. 

A question to the user asking for the value of the day. 
A question to the user asking for the value of the month. 
A more open-ended question asking for the value of the date (day and month). 
A final action, closing the dialogue and submitting the form. 

The next definition concerns with the main assumption of our model: 
We assume that the goal of a dialogue system is to achieve an application goal in an 
ejjkient way through a series of interactions with the user. 
Any dialogue system has an application goal: whether it is filling a form by 
obtaining information from a user (like in our tutorial example), or information 
retrieval, where the system is trying to provide some useful information to the user 
(like in the Air Travel example below). The efficiency, depending on application, 
represents dialogue duration, cost of internal processing, cost of accessing external 
databases or other resources, etc. 
We further assume that for each application we can measure the system performance 
by an objective function C, 

13 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 



where the costs Ci measure the distance to the achievement of the application goal, 
and the efficiency of the interactions. Therefore, the goal of dialogue system design 
is to build a system with a strategy that minimizes this objective function. It has been 
shown in [9] that also an abstract cost reflecting user satisfaction with the system can 
be measured experimentally and modeled as a linear combination of costs as in 
equation (1). In a real system, the user satisfaction cost can constitute one of the 
terms in (1). For our tutorial example, where the goal of the system is to obtain the 
correct day and month values through the shortest possible interactions, the objective 
function includes three terms: 

(2) C = Wi * <# interactions> + We * <# errors> + Wf * <# incomplete values>. 

The first term is the expected duration of the dialogue; the second corresponds to the 
expected number of errors in the obtained values (ranging from 0 to 2); and the third 
measures the expected distance from achieving our application goal (this distance is 
0 for a complete date, 1 if either day or month value is missing, and 2 if both are 
incomplete). 

In order to reflect this objective function in our dialogue model, we associate a cost c 
to the taken action a in a state s. The cost incurred with any of the first three actions 
in day-and-month dialogue system is Wi + We * number of errors. If we assume 
that the concept error rate for recognition of month or day values separately (for 
questions 1 and 2) is p l ,  and together (for question 3) is p2, p2 > P I ,  then the 
expected cost accumulated when actions 1 or 2 are taken is Wi +We*pl, while for 
question 3 is Wi +2*We*p2. For action 4 (closing the dialogue and submitting the 
obtained date) the cost depends deterministically on the state in which this action is 
taken and is Wi + 2Wf for an initial state, Wi + Wf for states in which either the day 
value or month value is unfilled, and Wi for the states in which both values are filled 
in. 
In general, the costs in MDP are described by the conditional distributions 

Pc( c(t) = c I s(t) = s, a(t) = a). 
If we define the session cost as a sum of all the costs experienced by the system 
during a dialogue, then the objective function (1) corresponds to the expected 
dialogue session cost. 
This quadruple of state space, action set, transition probabilities, and cost 
distributions defines a Markov decision process. 

Of course, different strategies for the same system result in different expected 
session costs. Figure 1 shows three different strategies and their costs for the day- 
and-month system. We define an optimal strategy as the one that minimizes the 
objective function. For example, in figure 4, strategy 1 (where the system does not 
even engage in dialogue, closing the dialogue as the first action) is optimal when the 
recognition error rate is too high: p l  > (Wf-Wi)/We. 

74 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 



In strategy 2,  the system opens the dialogue by asking the open ended question 
numher 3, fills out the day and the month slots with the values recognized from the 
user response, and closes the session. In strategy 3, the system first fills up the day 
and !;hen the month by engaging in actions 1 and 2, and then closes the session. 
Stratiagy 3 is optimal when the difference in error rates justifies a longer interaction: 
p 2  -121 > Wi / 2 We, 
In thie following section we address the problem of finding the optimal strategy 
autoinatically . 

Strategy 1: 

Strategy 2: 

c3 = 3" wr+ 2*Pl*WE 

Figure 1: Three different strategies 

2. TOWARDS AN AUTOMATIC DESIGN OF MAN-MACHINE 
DIALOGUE SYSTEM: THE REINFORCEMENT LEARNING 
APPROACH 
Stating the problem of man-machine dialogue design as an optimization problem 
provides the following potential advantages: 
Ob,jective evaluation: It is possible now to grade different strategies for the same 
system just by comparing their expected cost. It is also possible to compare different 
systems that share the same objective function. 
Automatic design: Since the problem of strategy design is cast as optimization 
problem, it is possible to devise methods for performing this optimization 
automatically. 
Such automatic design procedure for finding the optimal strategy is the subject of the 
reinforcement learning discipline. For a tutorial on reinforcement learning look at 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 



[6]. In this section we outline the computational issues involved in the problem of 
finding automatically the optimal strategy for MDP. 

2.1 Computing an Optimal Strategy when the Model is Known 
There exist in literature several techniques for computing the optimal strategy given 
the correct model parameters (the transition probabilities and the cost distributions), 
including value iteration, policy iteration, etc. These techniques are based on 
dynamic programming that can be used due to the Markovian nature of this model. 
They rely on the following definition: 
Optimal value V(s) of a state s is the lowest expected cost incurred after the system 
left state s and until it reached the final state. The optimal value function is unique 
and can be defined as the solution to the simultaneous equations 

(3) 
a S’ 

where e C(s,a) > is the expected cost for action a in state s. 
This equation states that the optimal value of state s is a sum of expected 
instantaneous cost plus the optimal value of the next state, using the best available 
action a*(s). Given the optimal value function, the optimal strategy can be computed 
simply as 
(4) 

V(s) = min (< C(s,a) > + FT(s’ I s,a) V(s’) ), 

a*@) = argmin (e C(s,a) > + FT(s’ I s,a) V(s’)). 
St a 

Techniques like value iteration, policy iteration, and others iteratively solve 
equations (3) and (4) for computing the optimal strategy. 

2.2 Learning the Optimal Policy: Model-Free Methods 
However, in most of the interesting cases it is not possible to use the model-based 
methods above because of one or more of the following reasons: 
- The state space is very large (or infinite). The number of equations in (3) is 

equal to the number of states, and it is impossible not only to solve them, but 
even to store in memory the optimal strategy. 
Some of the MDP parameters are not known in advance. As it is illustrated by 
the tutorial example above, some of the model parameters reflect the probability 
of user‘s response given the system question and the state of the dialogue. Other 
parameters can reflect the properties of external resources, such as a remote 
database, that are also unknown in advance. 
Delayed reinforcement. Some costs (e.g. total user satisfaction measured by a 
score that a user gives at the end of the dialogue) depend on actions taken during 
the session, but are available only at the end of the session. 

Reinforcement learning (RL) is primarily concerned with obtaining the optimal 
strategy in such cases when the model is not known in advance, too large to 
compute, or reinforcement is delayed. In the reinforcement learning paradigm the 
system learns the optimal policy from interactions with the user. If during a dialogue 
session the system chose an action a in state s, and accumulated a total cost C until it 
reached the finite state, the estimated value of state s for action a is updated from this 
experience. The details of an actual update differ between the different RL 

- 

- 

76 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 



algorithms, whether it is Q-learning, Monte Carlo style algorithms, on and off policy 
estimation algorithms, etc.. Note that unlike in an automatic speech recognition, 
where the estimation of HMM parameters constitutes the learning of the model, in 
IU ithe MDP parameters are not estimated, but rather the optimal policy is learned 
directly from interaction. 

3. USING RL FOR LEARNING THE OPTIMAL STRATEGY 
FOR THE ATIS DOMAIN. 
We used a Monte Carlo style reinforcement learning algorithm to learn the optimal 
strategy for a dialogue system based on the ATIS task. The possible actions of the 
system in this case include: greeting the user with an open ended question (i.e. How 
can I help you?); asking the user to provide information about a specific attribute of 
the task (e.g. origin, airline, departure time, etc.); retrieving data from the database 
according to the current user request (this action does not involve interaction with the 
user); output the retrieved data to the user; asking the user to release a constrain; and 
closing the dialogue. 
We chose a very simple state description in order to simplify the learning. The state 
included three templates (a template is a set of keyword-value pairs that we used in 
our ATIS understanding system [3] as a meaning representation). The user template 
represents the meaning of user request interpreted in context; the data template 
includes the number of data tuples retrieved from the database according to the query 
basted on user template; and the system template includes a keyword OUTPUT only 
if the action output was used in the past and data was output to the user. 
The objective function for this application has four terms: 
( 5 )  Objective function = W l  * # interactions + 

W2 * cost of data retrieval + 
W3 * cost of data presentation + 
W4 * cost of user dissatisfaction , 

where the cost of data retrieval is linear with the number of tuples retrieved, cost of 
data presentation is zero for a reasonable number of tuples ( very few, if the system 
has to verbalize the data, more if it can use a display), and rapidly increasing with the 
number of tuples thereafter, and the user dissatisfaction cost that penalizes with a 
fixled cost dialogues that fail to provide flight information to the user. 
Thle system started with no knowledge of the task, i.e., each action had the same 
probability of being selected by the system at any step. A typical dialogue with an 
untrained system will look like the following: 
System: RELEASE AIRLINE: Do you want to choose another 

airline? 
User: What? 
System: RETRIEVAL 
System: CONSTRAIN DEPARTURE TIME: When do you want to leave? 
User: Uh? I want to g o  to Boston 
System: OUTPUT DATA: There are 12000~ights ... 
User: I don’t understand, can you 

please show me 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 



System: CLOSE DIALOGUE: 

the flights from San Francisco 
to Boston? 
Thank you for using AT&T 

Of course the total cost for this dialogue is quite high, especially due to the high cost 
of retrieval (all the database was retrieved here) and data output (12000 flights). 
After training the system learned the following optimal strategy: start the dialogue by 
greeting (the probability of getting more information from the user is higher with 
greeting rather than a specific question), ask constraining questions until the origin, 
destination, and airline are specified, and retrieve data from the database. After the 
retrieval, if the resulting data set is empty (because the query was over-constrained), 
release the airline constraint and retrieve again. If there are too many flights in the 
data set, ask to constrain the departure time and retrieve again. If at any point during 
the dialogue the retrieved data set has a reasonable number of flights, the data is 
output and the dialogue is closed. 

An example of dialogue performed with a trained system is as follows: 
System: GREETING: This is the AT&Tflight 

information. How may I help 
you? 
I want to go to Boston 
Where do you want to leave 
from? 

User: 
System: CONSTRAIN ORIGIN: 

User: San Francisco 
System: CONSTRAIN AIRLINE: Which airline? 
User: Delta 
System: RETRIEVAL (30 Flights retrieved) 
System: CONSTRAIN DEPARTURE 
User: In the late afternoon. 
System: RETRIEVAL (3 flights) 
System: OUTPUT DATA: 

User: Thanks 
System: CLOSE DIALOGUE: 

When do you want to leave? 

Flight ... leaves at ..., flight .. 
leaves at, ... 

Thank you for using AT&T 

Rather than conducting thousands of dialogues with the system in order to train it, 
we used a user model that is described in a companion paper [8]. The user model is a 
stochastic dialogue system that generates a reasonable user response to system 
actions. Different parameters of the user model will result in different learned 
strategies. The strategy described above was obtained by interactions with a user 
model that has a very high degree of compliance (i.e. very high probability of 
producing proper answers to system's questions). 

4. Summary 
In this paper we propose a formal quantitative model for man-machine dialogue 
systems. First, we introduce a general formalization of such systems in terms of their 

78 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 



state space, action set and strategy. With this formalization we can describe any 
dialogue system without loss of generality. Then, we proceed with the main 
assuinption that a good strategy for a dialogue system is minimizing an objective 
function that reflects the costs of all the important dialogue dimensions. With this 
assumption we can model any man-machine dialogue system using a Markov 
decision process, a stochastic model commonly used today for control, games, and 
other applications, and use reinforcement learning algorithms for designing the 
optimal strategy automatically. We used reinforcement learning algorithm to learn an 
optimal strategy for air travel based dialogue system, and showed that a system that 
started without any initial knowledge converged to a very reasonable strategy. This 
paradigm also allows us to objectively evaluate and compare different strategies and 
different systems for the same application. 

Refirences 
[ l ]  Roc. of 1995 ARPA Spoken Language Systems Technology Workshop , Austin 
Textas, Jan. 1995. 
[2] Glass, J. et al., “The MIT Atis System: December 1994 Progress Report”, Proc. 
of 1995 ARPA Spoken Language Systems Technology Workshop, Austin Texas, Jan. 
1995. 
[3] ILevin, E., Pieraccini, R., Di Carlo, A., “User Initiated Mixed Initiative Dialogue 
for Database Information Retrieval,” to appear in LuperFoy, S. (editor) Automated 
Spoken Dialogue Systems, MIT Press. 
[4] Sadek, M.D., Bretier, P., Cadoret, V., Cozannet, A., Dupont, P., Ferrieux, A., & 
Panaget, F., “A Cooperative Spoken Dialogue System Based on a Rational Agent 
Model: A First Implementation on the AGS Application,” Proceedings of the 
ESCNETR Workshop on Spoken Dialogue Systems, Hanstholm, Denmark, 1995. 
[5] Stallard, D., “The BBN ATIS4 Dialogue System,” Proc. of 1995 ARPA Spoken 
Language Systems Technology Workshop, Austin Texas, Jan. 1995. 
[6]Kaelbling, L. P., Littman, M. L., Moore, A. W., “Reinforcement Learning: A 
Survey,” in Journal of Artijicial Intelligence Research, No. 4, pp. 237-285, May 
1996. 
[7]1vktrcus, S. M., Brown, D. W., Goldberg, R. G., Schoeffler, M. S., Wetzel, W. R., 
and Rosinski, R. R. “Prompt Constrained Natural Language - Evolving the Next 
Generation of Telephony Services,” Proc. of ICSLP ‘96, Philadephia (PA), October 
1996. 
[8] Eckert, W., Levin, E., Pieraccini, R., “User Modeling for Spoken Dialogue 
Systems,” in Proc. IEEE ASR Workshop, Santa Barbara, 1997. 
[9] Walker, M. A., Littman, D. J., Kamm, C. A., Abella, A., “PARADISE: A 
Framework for Evaluation of Spoken Dialogue Agents,” in Proc. 3 5 t h  Annual 
Meeting of the Association for  Computational Linguistics, Madrid, Spain, 1997. 

19 

Authorized licensed use limited to: GOOGLE. Downloaded on December 28,2020 at 12:55:00 UTC from IEEE Xplore.  Restrictions apply. 


