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ABSTRACT

Stochastic language models are widely used in spoken language under-
standing to recognize and interpret the speech signal: the speech samples
are decoded into word transcriptions by means of acoustic and syntactic
models and then interpreted according to a semantic model. Both for
speech recognition and understanding, search algorithms use stochastic
models to extract the most likely uttered sentence and its correspondent
interpretation. The design of the language models has to be e�ective in
order to mostly constrain the search algorithms and has to be e�cient to
comply with the storage space limits.
In this work we present the Variable Ngram Stochastic Automaton (VNSA)
language model that provides a uni�ed formalism for building a wide class
of language models. First, this approach allows for the use of accurate
language models for large vocabulary speech recognition by using the stan-
dard search algorithm in the one-pass Viterbi decoder. Second, the uni-
�ed formalism is an e�ective approach to incorporate di�erent source of
information for computing the probability of word sequences. Third, the
VNSAs are well suited for those applications where speech and language
decoding cascades are implemented through weighted rational transduc-
tions. The VNSAs have been compared to standard bigram and trigram
language models and their reduced set of parameters does not a�ect by any
means the performances in terms of perplexity. The design of a stochastic
language model through the VNSA is described and applied to word and
phrase class based language models. The e�ectiveness of VNSAs has been
tested within the ATIS task to build the language model for the speech
recognition and the language understanding system.
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1 Introduction

The noisy channel paradigm is the basis for the classical equation of speech recognition where
a word sequence W = w1; w2; : : : ; wN is interpreted as a noisy version of the speech signal.
Within this framework, given a sequence of acoustic measurements O = o1; o2; : : :oM , it has to
be found a sequence W such that the a posteriori probability:

P (W jO) =
P (OjW )P (W )

P (O)
(1.1)

is maximum over all possible sequences of words W :

Ŵ = argmax
W

P (OjW )P (W ) (1.2)

where Ŵ is the recognized sequence of words and P (OjW ) is the probability of a set of acoustic
observations for a given sequence of words [Rabiner & Juang, 1993]. The same framework has
been applied successfully for machine translation ( [Brown et al., 1990]) and language under-
standing ( [Pieraccini & Levin, 1992]) where given a word sequence W , the most likely sequence
of concepts Ĉ (interpretation) is found by maximizing the a posteriori probability P (CjW ) over
all possible concepts C.
Stochastic language models are generally used for computing the probabilities P (W ) and P (C)
for any possible sequence of symbols (words or concepts). In order to perform the maximization
of the type in equation 1.2, one of the most successful parsing algorithm is the Viterbi decoding
along with the beam search [Rabiner & Juang, 1993]. Despite the advantage of being a time-
synchronous search, only very simple word boundary constraints (e.g. word pair or bigram)
have been exploited into such decoding schema. A second approach is the stack decoding algo-
rithm: it has the attractive property of being a best �rst search through a linguistic hypothesis
tree and a search for the optimal word string rather than the optimal state sequence (as in
the Viterbi algorithm) can be performed. However the problems arising in calculating heuristic
functions to prune all word string hypotheses make this algorithm di�cult to use for speech
recognition application [Bahl, 1983]. More recently, multi-step rescoring procedures have been
designed to handle language models of increasing complexity [Soong, 1990], [Austin, 1991]. In
this case, �rst a one-pass Viterbi decoding is performed with a coarse language model (e.g.
bigram) and a pruned lattice of word hypotheses is obtained: then, more accurate language
models can be adopted to parse the n-best hypotheses. The problem with this approach is that
several pruning stages can a�ect the search for the best word sequence while the best strategy
would be to apply in a time-synchronous fashion the best available language model in a one-step
decoding process.
The main motivation for our work is to be able to handle accurate language models in a one-step
procedure of the maximization process in equation 1.2 so that we can maximize the number of
constraints and increase the accuracy. In order to achieve this goal we provide algorithms to
design stochastic �nite state automata that are both e�ective (in terms of performance) and ef-
�cient (in terms of parameter number) for all applications where a network search is performed
(e.g. Viterbi decoder) or speech and language decoding cascades are implemented through
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weighted rational transductions [Pereira, Riley & Sproat, 1994]. Furthermore, in this work we
show how this uni�ed formalism is an e�ective approach to incorporate di�erent source of in-
formation for computing the probability of word sequences (e.g. word and phrase class based
language models). Within the framework of the VNSAs, we design and evaluate class based
language models that outperform (in terms of perplexity and recognition error rate) the stan-
dard n-gram language model.
In the following section we describe the main issues related to the design of a stochastic lan-
guage model and we recall the standard approach to n-gram language modeling. In section 3
we describe the problem of representing a stochastic language model through a Stochastic
Finite State Automaton. Then in section 4 we present our solution to approximate an N -
gram language model through a �nite state automaton : the Variable N -gram Stochastic Au-
tomaton (VNSA). The computation of transition probabilities for these stochastic automata
is detailed in section 4.2. In section 5 we study the impact of VNSAs' non determinism on
the language perplexity, and the word error rate (WER). Last but not least, the design of
a word and phrase class based stochastic language model is presented in 6 and the results
in terms of perplexity and WER for a one-pass Viterbi decoder, are reported in section 7
along with a comparison to the standard n-gram language models. The complete description
of the application of these stochastic networks into a language understanding system is given
in [Pieraccini & Levin, 1992], [Pieraccini & Levin, 1994].

2 The n-gram language and related issues

Stochastic language models are generally used for computing the probability P (W ) for any
possible sequence of words W = w1; : : : ; wN . P (W ) can be written as:

P (W ) =
NY
i=1

P (wijw1; : : : ; wi�1) (2.2)

In practice, it is impossible to estimate all the conditional probabilities P (wijw1; : : : ; wi�1)
for a reasonable sentence length. In the literature, the most established model has been the
n-gram language model [Jelinek, 1980]. In this case, it is assumed that the probability of a word
wi given the context w1; : : : ; wi�1, depends only on the n previous words. Thus equation 2.2
can be rewritten as:

P (W ) =
NY
i=1

P (wijw1; : : : ; wi�1) = P (w1 : : :wn�1)
NY
i=n

P (wijwi�n+1; : : : ; wi�1) (2.3)

The conditional probabilities of an n-gram model are generally estimated using a corpus of sen-
tences that reects the statistics of the language (training set). Under the Maximum Likelihood
paradigm the estimated probabilities are of the form:

P̂ML(wijw1; : : : ; wi�1) =
C(w1; : : : ; wi�1; wi)

C(w1; : : : ; wi�1)
(2.4)
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where C(ck) is the frequency of the event (word tuple) ci in the corpus. In order to obtain
a nonzero probability for any event (w1; : : : ; wi�1; wi), we have to take into account rare or
unseen events and estimate their probability on the basis of the available samples 1. The most
used approach to this problem has been the discounting of ML estimates. The probability mass
of the observed events is discounted so that a probability mass can be assigned to the unseen
events. Namely, the discounted probability P̂ (ck) is computed as a linear combination of the
ML estimate:

P̂ (ck) = akP̂ML(ck) + bk ak; bk 2 [0; 1] (2.5)

Di�erent heuristic methods have been proposed and some of them are reported in appendix A.
As a result of the discounting procedure, a nonzero mass probability, D, for all unseen events

is obtained:
D = 1�

X
k

P̂ (ck) (2.6)

Then the probability, D, has to be redistributed among all unseen events, K0. If we assume
all unseen events are equally likely, the probability estimate of each unseen event, uk, would
be P̂ (uk) = D=K0. However, in most cases a uniform distribution over all unseen events might
be too a simplistic approach. Two general procedures for assigning a probability to each of the
unseen events have been proposed in the literature of speech recognition. The interpolation
technique was �rst used in the past [Jelinek, 1980]. The principle behind interpolation is that
the probability of a generic eventW (seen or unseen) is a linear combination of the probabilities
of all events that include W : for example the event represented by the word pair (I WANT)
includes the event (I WANT TO), (I WANT TO GO), etc.. In the case of an n-gram language
models, the n-gram probability P̂ (wnjw1; : : : ; wn�1) is obtained by linear interpolation among
the probabilities of events of lower order n-gram models:

~PI(wijw1; : : : ; wi�1) = �i�1P̂ML(wijw1; : : : ; wi�1)+�i�2P̂ML(wijw2; : : : ; wi�1)+: : :+�0P̂ML(wi)
(2.7)

where the interpolation parameters �0; : : : ; �i�1 are estimated using a corpus of sentences dif-
ferent from those used for estimating the original n-gram probabilities. However, the so called
backo� method was proved to be less burdensome as far as the computation of free parameters
�i while giving good results [Jelinek, 1980], [Katz, 1987]. The computation schema inferred by
equation 2.7 uses all probabilities of all events including W , while the backo� method, out-
lined in [Katz, 1987], takes into account only one observed event, namely the closest to W . In
terms of n-gram language model, the closest event to the word tuple (wi; : : : ; wj) is the tuple
(wi+1; : : : ; wj). Thus, the backo� algorithm for an n-gram language model can be given in a
recursive form:

~PB(wijw1; : : : ; wi�1) = P̂ (wijw1; : : : ; wi�1) +

�(P̂ (wijw1; : : : ; wi�1)) �(w1; : : : ; wi�1) ~PB(wijw2; : : : ; wi�1) (2.8)

where P̂ (wijw1; : : : ; wi�1) is a discounted estimate (see equation 2.5), the �(x) function is de�ned
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by:

�(x) =

8><
>:

1 if x = 0

0 otherwise
(2.9)

and the coe�cient �(w1; : : : ; wi�1) is a normalizing constant such that:
X
w

~P (wi = wjw1; : : : ; wi�1) = 1: (2.10)

where the sum is calculated for all words w observed in training corpus.
The recursive procedure in equation 2.8 is very e�cient in terms of required number of parame-
ters with respect to the schema in equation 2.7. On the other hand the interpolation schema is
a suitable approach to smooth the n-gram probability with other syntactic-semantic constraints
(e.g. word classes).

3 Towards a uni�ed representation of an n-gram language model

The purpose of this work is to show how an n-gram language model can be designed on the basis
of a uni�ed formalism, that is the Stochastic Finite State Automaton (SFSA). In this framework,
the probability P̂ (W ) is derived as the probability of the word sequence W recognized by
the SFSA and to each word sequences one or more sequences of states are associated. The
motivation to build a stochastic automaton to realize the language model is twofold:

1. To make the computation of P (W ) independent of the language model as long as it
can be represented through a stochastic �nite state automaton. The probability P (W )
of the string W (recognized by the automaton) is derived from the probabilities of the
corresponding state sequences.

2. To improve the e�ciency of any search algorithm that is based on a network search
(e.g Viterbi's algorithm). In particular, speech recognition is performed by searching for
the word sequence that maximizes a MAP criterion (equation 1.2). With our approach,
this process is formalized as the search of the "best" path in a network. Therefore, we
can increase the decoder e�ciency by compiling into the �nite state network additional
constraints (e.g. tree lexicon structured network, network with crossword constraints
etc.).

The di�culties arising in representing an n-gram language model through a stochastic �nite-
state network are the following:

1. The straightforward full network representation, where each probability
P (wijwi�n+1; : : : ; wi�1) is associated to an arc, is not possible, because it requires a num-
ber of arcs proportional to jV jn, where jV j is the number of words in the vocabulary
V .
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2. The recursive schema of equation 2.8 must be adopted in the �nite state formalism to
achieve e�cient implementation of the backo� mechanism.

Another important issue is the design of word and phrase class based language models: train-
ing algorithms must be designed to incorporate syntactic-semantic knowledge into a stochastic
�nite state automaton.
The idea of using a �nite state stochastic automaton as language model for speech recognition
has been proposed in [Jelinek, 1976] and �rst applied to the Raleigh arti�cial language. More
recently, a stochastic automaton network for bigrams, has been applied to learn a grammar for
large vocabulary speech recognition [Placeway, Schwartz, Fung & Nguyen, 1993]. In our work,
we present a general model for designing e�cient and e�ective stochastic �nite state automata
for n-grams (n � 1) and class-based language models.
In the following paragraphs of this section, we introduce the simple case of the approximation of
a bigram language model, through a �nite state automaton. In section 4.1, a general framework
is presented: the Variable Ngram Stochastic Automaton [Riccardi, Bocchieri & Pieraccini, 1995].

3.1 Stochastic automata for bigram language models

Backo� strategies can be implemented in a stochastic �nite state network in such a way that
the speech recognizer does not have to handle the estimation formulas 2.8 directly, but it rather
has to perform a search through a network. In particular, we want to compute the probability
P (wijwi�n+1; : : : ; wi�1) based on P (wijwi�k+1; : : : ; wi�1) (k < n) according to if-then-else con-
ditions like those in equation 2.9. Assume we have a bigram network like the one shown in �g. 1.
The states s0 and sf are the initial and �nal states of the automaton. For the sake of clarity
the transition probabilities are not shown. The vocabulary is composed of three words (a, b,
and c) and a state is associated to each word. Let us assume that only the events ab, ac, bc, cb
have been observed and then we can compute the ML estimates P̂ML(bja); P̂ML(cja); P̂ML(bjc)
and P̂ML(cjb). Using this network for parsing (recognizing) a sequence of words will fail when
the sequence contains bigrams that were not observed, like in the sequence aabacb.

FIGURES 1 and 2 SHOULD BE PLACED HERE.

A solution is to add all the missing transitions (dashed arcs), as it is shown in �g 2, and
to compute their probabilities according to the backo� estimation technique. The application
of the backo� procedure, results in the following estimates:

~P (aja) = �aP̂ (a) ~P (bja) = P̂ (bja) ~P (cja) = P̂ (cja)
~P (ajb) = �bP̂ (a) ~P (bjb) = �bP̂ (b) ~P (cjb) = P̂ (cjb)
~P (ajc) = �cP̂ (a) ~P (bjc) = P̂ (bjc) ~P (cjc) = �cP̂ (c):

(3.2)

where the same notation as in equation 2.8 is adopted. The full n-gram network (�g. 2) cannot
be realized in practice since the total number of transitions (i.e. Nn

V , where NV is the size of
vocabulary V ) is too large for the implementation of the network in a real application. With
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a vocabulary of 1,000 words, a tri-gram language model would need to store 1 billion state
transitions. The backo� probabilities de�ned by equation 3.2 can instead be used within the
network shown in �g. 3.

FIGURE 3 SHOULD BE PLACED HERE.

It should be noticed that there is only a transition out of each node (arcs with associated proba-
bility �a; �b and �c) to represent all the missing transitions. All those transitions are leading to
a common null state (i.e. a state that does not recognize any word) that is represented by the
symbol �. The null node is then connected to each state in the network. The network described
in �g. 3 corresponds to that one proposed in [Placeway, Schwartz, Fung & Nguyen, 1993] for
bigram language modeling.

3.2 Non-determinism in stochastic automata

In the standard n-gram language model (section 2) a word sequenceW is assigned with a unique
set of conditional probabilities ~P (wijwi�n+1; : : : ; wi�1) and the probability P (W ) is computed
through equation 2.2. When a language model is represented through a stochastic �nite state
automaton, an input word sequence W can be accepted by the automaton through one or more
state sequences (paths). In particular, the automaton that allows for multiple paths is called
non deterministic. For instance, in the previous example, the sentence abbc can be recognized
through the sequences of states ab�bc, a�b�bc, ab�b�c, etc. Of course the path that gives the
probability corresponding to the backo� equation 2.8 is ab�bc. However, when the stochastic
automaton is used within the Viterbi algorithm only the path the maximizes equation 1.2 will
be chosen. The probability of a sentence W given by the Viterbi algorithm can be written as:

Pvit(W ) = P (W; �̂) (3.3)

where:
�̂ = arg max

�2�W
P (W; �) (3.4)

being �W the set of all sequence of states � that account for the word sequence W . The
probability of W is then:

P (W ) =
X

�2�W

P (W; �) (3.5)

If the automaton is deterministic there is only one sequence of states that accounts for the input
words, hence we can write:

P (W ) = Pvit(W ) (3.6)

If the automaton is non deterministic we generally make the assumption that the maximum
term is prevailing in the sum of equation 3.5, hence:

P (W ) � Pvit(W ) (3.7)
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but we cannot always assume that this hypothesis is true. However we can compute the word
sequence probability either by means of the forward algorithm ( [Baum, 1972]) or by using its
Viterbi approximation. The di�erence between the two values we de�ne to be the degree of the
network non-determinism. The comparison of equation 2.2 and 3.5 points out the di�erences
between the standard n-gram language model and the stochastic automaton. In the latter
case, the probability P (W ) is de�ned in terms of paths and transition probabilities. Both the
sequences of states and the transition probabilities are determined by the model used to build
the automaton. In the following section, we propose our approach to build stochastic automata
for language modeling: the Variable Ngram Stochastic Automaton (VNSA). In section 7 we
evaluate the goodness of the VNSA as an approximation to the standard n-gram models.

4 The Variable Ngram Stochastic Automaton (VNSA)

The design of a stochastic automaton is described by the state transition function and the
state transition probabilities. Our algorithm de�nes the state transition function based on
the set of events (word tuples) occurring in the training set T and associates these events to
the states. In paragraph 4.1 we present the Variable Ngram Stochastic Automaton and the
model description is completed in paragraph 4.2 with the algorithms used to compute the state
transition probabilities.

4.1 De�nition of the Variable Ngram Stochastic Automaton (VNSA)

A stochastic non-deterministic �nite state automaton Q is described by the
quintuple fS;V;F ; s0;Sfg, where S is a set of states s, V is a set of words ( including the
empty word �), s0 is the initial state and Sf � S is a set of �nal states. F is a state transition
function that given a state s and an input word w 2 V returns the set of pairs f(twk ; p

w
k )g:

F(s; w) = f(twk ; p
w
k )g (k � 1), where pwk are the transition probabilities of going from state s to

state twk , for a given input word w. In particular, the automaton is non deterministic since we
allow F(s; w) to be a one-to-many mapping. The recognition process of an input word sequence
W = w1; w2 : : : ; wN starts with the application of F to the initial state s0 (instant 0) and input
word w1. Then, when in state s at the generic instant i and given an input sequence word
wi 2 V, the automaton will

1. apply state transition function to the state s with input word wi (6= �), move to the
corresponding next state (if F(s; wi) 6= ;), and read the next word in the input string,
and

2. apply the state transition function to the state s with the null word �, and move to the
corresponding next state (the current input word is not changed).

In the following, a state reached only through a null word will be called null state.
A VNSA is a non-deterministic stochastic �nite state automaton. Each state s 2 S is associated
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with a m-tuple observed in the training set, v1; : : : ; vm with 0 � m < n (n is called the order
of the automaton). The m-tuple v1; : : : ; vm is called the history of the state s and m is called
the history size. In the case m = 0 the empty word is associated to s. The history v1; : : : ; vm
of a generic state s is considered only for the purpose of the design and training of the VNSA
and it is not used while parsing word sequences.
At the generic instant i, given the current word wi and the current state s with history
v1; : : : ; vm, only two types of transitions are de�ned by the state transition function. Type
1 transition consumes an input word w and moves either to the non null state tw1 with history
v1; : : : ; vm; w (the history size is increased), or to the non null state tw2 with history v2; : : : ; vm; w
(the history size doesn't change). Type 2 transition does not consume any input symbol, and
moves to a null state t� (with history v2; : : : ; vm) with backo� probability p�: this transition
implements the backo� mechanism (the history size is decreased) and it corresponds to a loss
of part of the current state history in order to represent the next state in the automaton. The
transition of type 2 is always available, while the transition of type 1 may be not. It must be
observed that in this kind of automaton all transitions leading to a non null state with history
v1; : : : ; vm recognize word vm, while transitions leading to a null state always recognize the
empty word �. The predecessor s of a null state with history v1; : : :vm, has history of the kind
v; v1; : : : ; vm (v 2 V and v 6= �). Moreover, only a transition to the null state with history
v1; : : : ; vm is needed to decrease by one the history size of the state s with history v; v1; : : : ; vm.
As a result, for a state s with history v1; : : : ; vm, m transitions to null states are necessary to
lower down to zero the history size.
The automaton network, de�ned above , will be referred in the following as the canonical real-
ization of the VNSA.

FIGURE 4 SHOULD BE PLACED HERE.

In �g. 4 a portion of a third order VNSA network is shown. The vocabulary of the automaton is
V = fa; b; c; d; �g. For the sake of clarity transition probabilities are not shown and the symbols
activating a transition are on the arcs. Null states have rectangular shape and non null states
have round shape. The history of a state s is shown within parentheses in order to illustrate the
relationship between the event in the training set associated to s and the available transitions.
Let us assume that the automaton is processing symbol d, while the last two symbols read are
b and c. The automaton might be in state 3 or in state 8 since c was the symbol previously
processed. From state 3 the automaton can step into state 4 or into state 5. State 5 is a null
state and state 1 (history ac), 2 (history dc) and 3 (history bc) can decrease the history size
through the same null state 5 with distinct backo� probabilities. Once in state 5 the automaton
can release an additional history symbol by going into null state 6, or increase the history size
by going into state 4, or keep the same history size by stepping into state 7. From state 8 the
automaton can either keep the same history size by going into state 7 or increase it by stepping
into state 4. From the analysis of �g. 4, it is clear how the non determinism of the VNSA has
been designed to cope with need of e�ciency (shared transition to null states) and exibility
(variable length word contexts).
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4.2 Estimation of probabilities for the VNSA

For each state s (with history v1; : : : ; vm) of the VNSA automaton there is a set of words w 2 ws

(w 6= �) such that F(s; w) 6= ; and F(s; w) = f(tw1 ; p
w
1 ); (t

w
2 ; p

w
2 )g. For a state s the following

equation holds: X
w2ws

(pw1 + pw2 ) + p� = 1: (4.2)

where pw1 (pw2 ) is the conditional probability P̂ (t
w
1 js) (P̂ (t

w
2 js)) and the word w is the input sym-

bol (transition of type 1). The probability p� is the probability of decreasing the history size of
state s by one (transition of type 2). The similarity of equation 4.2 and 2.6 and the considera-
tions in section 2 let us compute the probability of loss of memory, p� (backo� probability) with
one of the method described in appendix A. The probability P̂ (wjv1; : : : ; vm) is redistributed
among pw1 and pw2 according to an interpolation schema. In particular, the probability pw1 (pw2 )
corresponds to the transition from the state s to the state tw1 (tw2 ) with associated word tuple
v1; : : : ; vm; w (v2; : : : ; vm; w). Hence, the two transitions from s to tw1 and tw2 correspond to the
same event in the training set, that is the word tuple v1; : : : ; vm; w, and pw1 and pw2 are implicitly
de�ned by the following estimate :

P̂ (wjv1; : : : ; vm) = �P̂ (wjv1; : : : ; vm) + (1� �)P̂ (wjv1; : : : ; vm)

= P̂ (tw1 js) + P̂ (tw2 js) (4.3)

= pw1 + pw2 (4.4)

The free parameter � is calculated within a cross validation framework as described in the
paragraph 4.3.
Given the non determinism of the VNSA, a word sequenceW = w1; w2 : : : ; wN can be recognized
along multiple state sequence � (path). Each path � corresponds to a di�erent decomposition of
the probability P̂ (W ) into n-gram type probabilities. In fact, each transition probability from
a state s to a state t is computed either as an n-gram type probability (see equation 4.4) or
as backo� probability. Along each single path, the probability P̂ (W; �) is computed through a
variable length n-gram model:

P̂ (W; �) =
Y
i

�i�iP̂ (wijwi�ni;� ; : : :wi�1) (4.5)

where �i are backo� probabilities, P̂ (wijwi�ni;� ; : : :wi�1) are discounted probabilities, �i
are de�ned as in equation 4.4 and each path � has associated an index sequence n1;�; : : : ; nN;�.

Then, the probability estimate P̂ (W ) can be written as:

P̂ (W ) =
X

�2�W

P̂ (W; �) =
X
�2�W

Y
(s;t)2�

P̂ (tjs) (4.6)

where �W is the set of all available paths � to parse the word sequence W and the pair (s; t)
is contained in the state sequence �. While all paths in �W have to be taken into account to
compute the probability P̂ (W ) (see section 3.2), the Viterbi algorithm selects the path which
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gives the best performance in the global maximization of probability P (W jO) (see equation 1.2).
Equations 4.5 and 4.6 show how VNSA's variable length history paradigm and non determinism
are exploited to both implement the backo� mechanism to recognize unseen word sequence in
the training set T and to smooth n-gram probabilities in the spirit of the interpolation schema
of equation 2.7.

4.3 Estimation of free parameters

The estimation of the backo� probabilities �i can be thought of as the estimation of free
parameters as in the case of the linear discount method: ak = � and bk = 0 8k in equation 2.5
and 2.6. Furthermore, the parameter � in equation 4.4 is a free parameter for the transition
probabilities of the VNSA automaton network. In both cases an estimated probability P̂ is
decomposed through a convex sum into two terms P̂1 and P̂2:

P̂ = P̂ + (1� )P̂ = P̂1 + P̂2 (4.7)

where  (0 �  � 1) is the generic free parameter. For the estimation of the free parameters
we have used a similar version of the cross validation method as described in [Stone, 1974].
The performance of a stochastic language model is usually assessed by estimating its perplexity
( [Jelinek, 1980]) which is a function of the estimated entropy of the language whose source is
assumed to be ergodic. The estimated entropy is then de�ned as:

Ê = �
1

n
log P̂ (w1; : : : ; wn); (4.8)

and the perplexity PE is de�ned as:

PE = 2Ê: (4.9)

Thus, the computation of the free parameters can be performed by minimizing Ê on a test set
and estimate the n-gram probabilities P̂ (wijwi�n+1; : : : ; wi�1) on a training corpus T . However,
the estimation of the free parameters can be carried out in such a way that each sample in T is
used to evaluate Ê and for this purpose we have partitioned the training corpus T in N subsets
T i such that T =

S
i T

i and T iTT j = ;. The set T =i =
S
j 6=i T

j is used to train the stochastic

model for a �xed  value and the test set entropy (cost function) ÊT i() is calculated on the
held out set T i. In the case of one free parameter  the test set entropy ÊT i() can be written
as:

ÊT i() = const�
1

n
(
nX
i

ci log() + log(�ai + bi)) (4.10)

where n is the number of words in the test set and the coe�cients ai, bi and ci (2 [0; 1]) depend
on the estimates P̂ (wijwi�n+1; : : : ; wi�1). As a result of setting the �rst derivative of Ê() to
zero in equation 4.10, a local minimum Ê(m) is guaranteed. This process is repeated N times,
so that each subset T i is employed to estimate . Then we have performed the optimization of
the parameter  on the all possible held out sets:

opt = argmin


X
i

ÊT i() (4.11)
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The same reasoning can be extended for multiple free parameters i obeying to the esti-
mation formula 4.7. This approach has been used for computing the parameters in the linear

discount method (see appendix A) and for the transition probabilities in the VNSA automaton.

4.4 Structure of the VNSA network

In this section we describe the overall structure of the VNSA network. In �g. 5 a portion of
the VNSA network is shown. Four network partitions, A;B;C and D, have been pointed out.
They contain states with history size (hs) 2; 1; 1 and 0 respectively.
Section D consists of just one null state with zero history size.
Network section A and C have non null states connected directly among them, within the par-
tition. More precisely, for a state sequence � containing states all belonging to either partition
A or C, in equation 4.5 we have that ni = n (n = 2 or 1 respectively) and �i = 1:0 8i.
Partition B contains only null states not connected among them but to states belonging to
partition A and C. In particular, for a state sequence � containing a state in B, in equation 4.5
we have an index i such that 0 < �i < 1:0 and ni < ni�1. The transition probability from a
non null state in A to a null state in B is the backo� probability p�.
In the most general case, from a non null state with history size hs (hs 6= 0) it can be reached a
state with history size either hs+1 (e.g. from a state in C to one in A) or hs (e.g. a transition
within partition A or C) or hs � 1 (e.g. from a state in A to one in B). As a whole, the
automaton from a non null state with history length hs � 1 can reach a null state with zero
history size without processing any new input symbol. On the other hand, the history size can
be only increased by one at each new input word.
The number of parameters of the canonical VNSA network depends linearly on the training
data size. The number of states and transitions in section C (MC and TC) is function of the
number of di�erent words and pairs, respectively, observed in the training data. The number of
states and transitions in partition A (MA and TA) depends on the number of pairs and triples,
respectively. In general if a partition contains states with history size hs, then the partition
has a number of states and transitions depending on the number of hs-tuples and hs+1-tuples,
respectively.

FIGURE 5 SHOULD BE PLACED HERE.

4.5 Heuristic state minimization of the canonical VNSA network

In this paragraph we deal with the issue of reducing the total number of parameters (states
and transitions) needed to build the canonical VNSA network. The sensitiveness of the VNSA
canonical network performance, with respect to the state reduction procedure, is evaluated in
terms of perplexity and, more signi�cantly, in terms of word error rate. The principle used
to prune states in the VNSA network is based on tresholding the number of occurrences of
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the word contexts corresponding to each state. The algorithm modi�es the canonical VNSA
network realization and decrease the number of states from Mi to Mf and the transitions from
Ti to Tf until a given reduction rate � = �(Mf=Mi; Tf=Ti) is achieved. The following pseudo
code describes the pruning procedure:

1. i=1

2. search for the states having a corresponding word context occurring i times.

3. redistribute the transition probabilities of the predecessors of these states and delete
them.

4. if the reduction rate is greater than �

� then increment i by one and go to 2.

� otherwise algorithm ends.

The key step of the algorithm is the redistribution of the probabilities and we describe that
in �g. 6. Let us suppose that the state s has to be deleted from the network. If one of the
preceding state is a non null state s1, then the transition probability P̂ (sjs1) is added to the
backo� probability P̂ (s�js1), as pointed out in �gure 6. If the preceding state is a null state
s� the transition probability P̂ (sjs�) is added either to the probability of going into non null
state s2 (if it is available, as in �gure 6) or to the backo� probability of state s� (not shown in
�gure 6).
This heuristic state minimization has given good results and for a 50% reduction of VNSAs'
parameter number, we have obtained only a 0:1% increase of the word error rate. More de-
tails on the size and perplexity of the networks are given in section 7. As a �nal remark, it is
worthwhile noting that the cross validation framework described in paragraph 4.3 can be also
applied to minimize the perplexity for a given reduction rate � .

FIGURE 6 SHOULD BE PLACED HERE.

5 Relationship between perplexity, word error rate and non-
determinism

We have performed experiments to investigate the relationship between the perplexity, the word
error rate of the speech recognizer and the non determinism introduced by the VNSA automata.
To this purpose, the VNSA network approximating a bigram language model (see �g. 3) has
been used. The training set consists of 20844 sentences from the ATIS corpus2 corresponding to
a total of 208,103 words. The test set (i.e. ATIS o�cial December 1994 test set) consisted of 981
sentences corresponding to 10,081 words. The size of the vocabulary is NV = 1530 words. The
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transition probabilities were computed with the uniform linear method (see appendix A) which
allows for continuous variation of the test perplexity. In particular it has been shown in sec-
tion 4.3, that a local minimum is guaranteed. The continuous variation of the parameter � corre-
spond to a continuous variation of the language model performance (i.e. in terms of perplexity).
The speech recognizer used in all experiments presented in this work, is the one designed for
the 1994 ATIS evaluation and it is described in [Bocchieri, Riccardi & Anantharaman, 1995].

FIGURE 7 SHOULD BE PLACED HERE.

Figure 7a shows the perplexity behavior for di�erent values of the discounting parameter
�. In order to compute the probability P̂ (w1; : : : ; wn) in equation 4.8 we have used the Viterbi
approximation (equation 3.7) and the forward algorithm. The di�erence between the two values
(degree of non determinism) increases as value of � is increased (see paragraph 3.2). Besides, in
the interval centered around the local minimum point �min for small variations of the parameter
� we have that PE ' PE(�min) (see equation 4.10). In �gure 7b the graph of the word error
rate is plotted. The same behavior of the perplexity curves of �g. 7a is found in the WER plot
in �g. 7b and in particular for a given value of the perplexity, the WER value is lower where
the degree of non determinism is higher (right side of the curve). From these experiments we
have seen that, even though non determinism in VNSAs is paid in terms of computational load
for the Viterbi decoding, that is critical to achieve the lowest error rates as well as to make the
system less sensitive to variation of the language model performance.

6 Word and selected-phrase classes

6.1 Bene�t of using word and selected-phrase classes

The generalization capability of the language model can be greatly achieved by integrating
semantic-syntactic knowledge to estimate the word sequence probabilities. In particular in
this paragraph we discuss the use of word classes (e.g. city=f BOSTON, CHICAGO, ..g, num-

ber=fONE, TWO, ..g) and selected-phrase classes (e.g. I WOULD LIKE TO, WHAT KIND OF, .. ).
The use of word and selected-phrase classes are intended here as a coarse but e�ective linguistic
and statistical classi�cation of the word sequences in training corpus. As result, this leads to
a language model which integrates high level knowledge into the speech recognition process.
There are four main reasons why word classes and selected-phrases should be helpful. First,
in a stochastic framework, the probability estimates are more robust against data sparseness.
Secondly, syntactic-semantic knowledge can be shared among language models pertaining to
the training corpora of similar tasks. For instance, word (e.g. city, number, airport, etc.) and
selected-phrase classes (e.g request phrase, speci�cation phrases, etc.) are common to any ap-
plication involving those concepts. Thirdly, class based language models are e�cient in terms
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of memory storage. Last, but not least, the speech recognition process bene�ts (in terms of accu-
racy) from the use of word classes and selected-phrases [Bocchieri, Riccardi & Anantharaman, 1995].

6.2 Application to the VNSA automaton

The use of the word and selected-phrase classes within the VNSA paradigm is quite straight-
forward. The training corpus is tagged with word and selected-phrase class labels so that each
word or word sequence is replaced with the corresponding label. Then a VNSA automaton is
built on the basis of the labeled training set. At this stage, the automaton is able to recognize
all possible sequences of class labels. The computation of the estimate P̂ (W ) can be obtained
after the expansion of each word and selected-phrase label (see appendix B for details on the
probability computation). As a result the application of the word classes and selected-phrases
to the VNSA paradigm, involves four steps:

FIGURES 8 and 9 SHOULD BE PLACED HERE.

� Lexical Analysis: the sequence of words in the training corpus is tagged with the word
and selected-phrase class labels. In �gure 8 and 9 are shown an example of word and
phrase class automaton used to label the training corpus.

� Stochastic Modeling: a VNSA automaton is built out of the �ltered training set.

� Expansion: all along the VNSA network obtained in the previous step, each label
( corresponding to a word or phrase class) has to be expanded into an automaton as
shown in �gure 8 and 9. Label expansion is performed in all states of the network ob-
tained in the previous step.

� Word and Selected-Phrase Class Automata Training: in this �nal step all the
transition probabilities inside the automata of the type shown in �gures 8 and 9 have to
be estimated. As �rst assumption, an uniform distribution can be adopted for each state.
However, Viterbi training has given better results in terms of perplexity and WER.

While estimating probabilities at the last step of the procedure, each class (word or selected-
phrase class) might contain elements unseen in the training set: in this case, we use discount
methods (see appendix A) to compute the probability of a word wi (not observed in the training
set) given a word or a selected-phrase class Di.
In the literature algorithms for automatic clustering of words have been studied ([Brown et al., 1992], [Kneser & Ney
as well as for automatic computation of selected-phrases ( [Magermann & Marcus, 1990], [Giachin, 1995]).
As far as the application to the ATIS domain, we have built the word classes by hand (13) and
we scored the whole set of selected-phrases in the ATIS training corpus based on the mutual
information measure ( [Fano, 1961]. Then we have identi�ed 18 selected-phrase classes. As a
whole, a total number of 31 classes have been used to design the class based language models
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for the ATIS 1994 evaluation ( [Riccardi, Bocchieri & Pieraccini, 1995]) and in the experiments
presented in the next section.

7 Language model performances

One of our goals is to adopt the VNSA stochastic networks as an approximation of the well
known n-gram language model into a one-pass Viterbi decoder. In order to compare the two
language models we used the Katz's bigram and trigram language model ( [Katz, 1987]) and we
evaluated the test perplexity on the ATIS data provided by the ARPA agency for the ATIS 1994
evaluation. From table 1 we can draw the conclusion that the VNSA networks are equivalent in
terms of perplexity to the n-gram model. In the following paragraphs we present a performance
analysis for di�erent estimation methods and for increasing model orders. We also show that
the VNSAs bene�t from the integration of syntactic-semantic knowledge and it improves both
the prediction power (perplexity) of the language model and the word accuracy of the speech
recognition. We conclude this section with results from the heuristic minimization algorithm
presented in paragraph 4.5 and with the WER scores for di�erent VNSAs' models.

TABLE 1 SHOULD BE PLACED HERE.

7.1 Test set perplexity for di�erent probability estimation methods

The results presented below are given for two di�erent type of test set, T and Tf . the �rst one
,T , has been designed for the ATIS 1994 evaluation (the same used in table 1) and the second
one,Tf is a �ltered version of the �rst one. Precisely, the second type of training set is obtained
as in the �rst step of procedure presented in paragraph 6.2, by tagging T with the word and
selected-phrase class labels. Tables 2, 3, 4 and 5 report the perplexity scores respectively for
VNSAs whose transition probabilities have been estimated through add-c, add-1, sub-1 and uni-

form linear discount methods (see appendix A for details). For the uniform linear method the
cross validation method was used to optimize the discount value, �opt. From the comparisons of
these results add-c method outperforms all the others and it is such method that has been used
for application to speech recognition [Bocchieri, Riccardi & Anantharaman, 1995]. Moreover,
the transition probabilities estimated with the uniform linear method have a number of backo�
probabilities dependent on the order of the VNSA automaton and the results in table 5 are sim-
ilar to those in table 2. In particular, this technique has been adopted for conceptual modeling
with VNSA automata ( [Pieraccini & Levin, 1994]). On the second line of table 2 the perplexity
scores are given for VNSA automata built when using word classes and selected-phrases (see the
procedure described in paragraph 6.2). These are the overall best performances achieved with
VNSAs and they support the bene�t expected from the use of linguistic knowledge for language
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modeling. Moreover, even in terms of WER the class based language model outperforms the
Katz's trigram language model and the canonical VNSA automaton built out of the non �ltered
training data T ( [Riccardi, Bocchieri & Pieraccini, 1995]).

TABLES 2, 3, 4 and 5 SHOULD BE PLACED HERE.

7.2 Performance of pruned VNSA networks

The procedure described in paragraph 4.5 has been applied within the cross validation frame-

work. Hence the training set T (Tf) has been split in two parts: the training set T =i (T
=i
f ) and

the held out part T i (T i
f ). The set T

=i (T
=i
f ) is used for training the VNSA automaton and T i

(T i
f ) is used as development set. Tables 6 and 7 reports about the experiments on a third and

fourth order VNSA automaton, respectively. For sake of clarity, in table 6 and 7 are shown

the perplexities over the set Ti (T
i
f ) for one of the possible pair (T =i; T i) ((T

=i
f ; T i

f ))
3. The

cuto� treshold tsh on the occurrence number of word contexts, varies between 0 (no pruning is
applied) and 4. Tables 8 and 9 give the number of parameters for di�erent values of the cuto�
treshold tsh. From tables 6 and 8 it can be seen that for a third order VNSA automaton, the
perplexity increase is only 3% when the number of parameters is halved. As far as the accuracy
performances, the use of networks with a halved parameter set allows for a WER increase of
only 0:1% with respect to the canonical network realization.

TABLES 6, 7, 8 and 9 SHOULD BE PLACED HERE.

7.3 WER performance as function of the language model

In �gure 10 it is plotted the word error rate score as function of the type of VNSA model.
The leftmost WER value refers to the unigram language model is used and the word error rate
is 17%. Acceptable WER scores are reached only when bigrams are used. For the third and
fourth order VNSA automaton word and phrase classes (as described in the previous section)
were used. No improvement was obtained for fourth order VNSA automaton. As a �nal re-
mark we point out that the recognition system achieves quite accurate scores with the second
order VNSA network, while the best system asset has to be obtained by means of higher order
language model integrating adequate linguistic knowledge.
It is worth noticing that our speech state-of-the-art speech recognizer has only one scoring pass
in a di�erent way from most systems designed for the 1994 ATIS ARPA evaluation (Proceedings
of the SLT Workshop, Austin 1995). The e�ectiveness (in terms of perplexity performance) and
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the e�ciency ( in terms of parameter number) of the VNSAs has greatly contributed to the
one-pass system con�guration that is also used for our real time system.

FIGURE 10 SHOULD BE PLACED HERE.

8 Conclusions

In this work we have presented an approximation of an n-gram stochastic language model by
means of a non deterministic automaton: the Variable Ngram Stochastic Automaton (VNSA).
The VNSA implements the backo� mechanism of the n-gram language model without a�ecting
the performance of the speech decoding algorithm itself (i.e. the backo� is compiled in the
network rather than performed at run time). Moreover the number of parameters of the VNSA
is not an exponential function of the vocabulary size, but it depends linearly on the number of
events (word tuples) in the training set. Furthermore, the number of parameters (transitions
and states) can be reduced with an heuristic minimization algorithm with a negligible decrease
in the language model performances. As a result, the VNSA networks are a viable approach
to e�ciently incorporate n-gram (n � 1) class based language model in the standard Viterbi
one-pass search algorithm for state-of-the-art speech recognition and language understanding.

The authors wish to thank the anonymous reviewers and Allen Gorin whose critical comments have
improved the presentation of this paper.
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Appendices

A Discounting techniques

The concept behind discounting techniques can be expressed as follows. Let us assume we are trying to
estimate the probabilities of a set of K events, namely P̂ (ck); k = 1; : : : ;K. From a given a training
set, each event can be assigned a frequency count C(ck); k = 1; : : : ;K. It is useful to de�ne as nr the
number of di�erent events that were observed exactly r times (r = C(ck)) and then we have that:

RX
r=1

rnr = N; (A.2)

where R is the frequency count of the most numerous events and N is the total number of samples in
the corpus. All the events with the same count r have maximum likelihood estimate, P̂ML(ck):

P̂ML(ck) =
r

N
(A.3)

Since it is not correct to assign a zero probability to the events that were never observed, a common
technique for coping with this problem (called discounting) consists in taking part of the probability
mass from the observed events and redistributing it among the unseen and rare events. The most used
implicit4 discounting technique is called Good-Turing estimation ( [Good, 1953]), and it is de�ned by
the following formula5:

P̂GT (ck) =
1

N

(r + 1)nr+1
nr

=
(r + 1)nr+1

rnr
P̂ML(ck) =

r�

r
P̂ML(ck) (A.4)

In particular, for the unseen events:

P̂GT (unseen events) =
n1

N
(A.5)

The problem arising in the implementation of the Good-Turing estimation of the probability of unseen
events is that, again due to the limited size of the training corpus, nr can be 0 for some value of r (e.g.
we may not have events that were observed exactly 5 times, but we may have events observed 4 and
6 times). Solutions to this problem can be found by smoothing the values nr (e.g. by using a median
�lter) or by introducing additional constraints in the probability estimation process, like suggested
in [Ney & Essen, 1993]. An other smoothing procedure for the Good-Turing estimates has been applied
by Katz ( [Katz, 1987]). In this work, the probability mass for the unseen events has been collected
from the events that have occurred not more than ks times. As a consequence the events ci such that
C(ci) > ks are estimated according to the ML formula given in equation A.3. Therefore, the probability
of event ci (C(ci) > 0) is computed through the following formula:

P̂KZ(ck) =

8<
:

P̂ML(ck) if C(ck) � ks

dKZ
r P̂ML(ck) if 0 < C(ck) < ks

(A.6)

where dKZ
r is a discount factor given by (r = C(ck)):

dKZ
r =

r�

r
� (ks+1)nk+1

n1

1� (ks+1)nk+1
n1

1 � r � ks (A.7)
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where r� is de�ned as in equation A.4. A more direct approach to the estimation of the discount
parameters is used in the explicit discounting. With explicit discounting, the amount of discounting o�
the probabilities of observed events is explicitly given as a free parameter. In particular, the following
equations hold :

P̂ (ck) =
(r � dr)

N
(A.8)

where dr is given as a function of r and r = C(ck) as above. The probability mass D available for
redistribution is then:

D = 1�
RX
r=1

nrP̂ (ck) = 1�
RX
r=1

nr(r � dr)

N
=

RX
r=1

nrdr

N
(A.9)

In the so called linear discounting the discount parameter dr is directly proportional to r, that is:

dr = �rr 0 � � � 1

P̂ (ck) = (1� �r)
r

N
r > 0 (A.10)

and then:

D =
RX
r=1

�r
rnr

N
(A.11)

A simpler6 way of approaching the discounting problem is referred as uniform linear discounting. In
this case �r = � 8r. Hence the whole probability mass � is assigned to all unseen events, namely:

D = P̂ (unseen events) = � (A.12)

In the �eld of text compression some heuristic techniques have been studied in order to cope with
the problem of the unseen events (also addressed as zero frequency problem) [Witten & Bell, 1991],
[Bell, Cleary & Witten, 1990]. Below the method add-1, sub-1 and add-c are described. Let N be the
total number of event observations, ck the generic event and K the number of distinct events. The
method add-1 states that the probability of observing a novel event (P̂ (unseen events)) is given by:

P̂+1(unseen events) =
1

N + 1
(A.13)

and the probability of a generic event ck, with r = C(ck) is:

P̂+1(ck) =
r

N + 1
(A.14)

For N large, the method add-1 makes P̂+1(ck) very close to the ML estimate P̂ML(ck) and it assigns a
small probability to the unseen events. Besides the probability of observing a novel event is the same as
the one of observing an event ck with C(ck) = 1. The method sub-1 makes the assumption that events
ck such that C(ck) = 1, have to be treated as unseen events. This way the counts of all events ck are
decreased by one and the collected probability mass is assigned to the novel event:

P̂�1(unseen events) =
K

N
(A.15)

where K is de�ned as above. The probability of a generic event ck is:

P̂�1(ck) =
r � 1

N
(A.16)
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Both P̂+1(ck) and P̂�1(ck) estimates, are very close when N is large, but the probability space in the
case of the method sub-1 is di�erently partitioned. In fact, in the case of method add-1, the events ck
such that C(ck) = 1 are not considered unseen events as in method sub-1. The third method, add-c, has
been thought as a compromise between the two methods described above. Hence, for method add-c, the
event space is not modi�ed and events ck such that C(ck) = 1, have still a small probability. Moreover,
the larger is the number of distinct events,K ,the higher is the probability of a novel event. In particular,
the probability of the novel event is:

P̂+c(unseen events) =
K

N +K
(A.17)

and the probability of a generic event ck is:

P̂+c(ck) =
r

N +K
(A.18)

The underlying reasoning of this estimate is that each time one of the K events, has been observed, a
novel event has also occurred so that the novel event has been counted K times.
As a whole, all event estimates presented in this paragraph can be expressed in a general form:

P̂ (ck) = akP̂ML(ck) + bk (A.19)

where the coe�cients ak and bk are derived by inspection of equations A.4, A.8, A.10, A.14,
A.16, A.18. Within the framework of VNSAs, for each state s with history v1; : : : ; vn, there is the proba-
bility of a novel event (backo� probability) and a set of probabilities of events ck � fword wk with left context v1; : : : ; vng.
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B Probability estimation with word and selected-phrase classes

The computation of the n-gram type probability, by means of word and selected-phrase classes, can be
viewed as a smoothing procedure which provides a robust estimate of the word tuples observed in the
training data. We examine �rst the case of word classes and then that one of selected-phrases.
In the case of a word class, di�erent words are mapped into the same set so that, for example, "BOSTON"
and "CHICAGO" belong to the same class city. More precisely, this is a many-to-one mapping fC :
w �! Cj , from a word w to a class Cj. If we associate each word w in the training set with a class Cj,
then we can compute the counts rCj

rCj = C(Cj) =
X
w2Cj

C(w): (B.2)

This way the probability estimation of class tuples, (C1; : : : ; Ci), bene�t from more robust and reliable
frequency counts. The probability of the word tuple (w1; : : : ; wi�1) in terms of the class tuple probability
can be computed as [Jelinek, 1980], [Brown et al., 1992]:

P̂ (wijw1; : : : ; wi�1) = P̂ (wijCi) P̂ (CijC1; : : : ; Ci�1) (B.3)

where the generic word wj is such that fC : wj �! Cj . In equation B.3 the n-gram probability

P̂ (wijw1; : : : ; wi�1) is factored in two terms: the term P̂ (wijCi) is the probability of word wi given the
class Ci and P̂ (CijC1; : : : ; Ci�1), can be computed by means of the methods presented in appendix A.
As far as the case of phrase classes, we assume here that the whole set G of such phrases is given as
well as the partition Gi such that G =

S
i Gi and Gi

T
Gj = ;. To each subset Gi 2 G is associated a

many-to-one mapping fG : gk = wi; : : : ; wj �! Gk. Thus, for each subset Gk an automaton can be
designed in order to recognize all word sequences gk = wi; : : : ; wj mapped into Gk. These automata
are used to map a word sequence W into a phrase label tuple g1; : : : ; gM . If we assume that this is a
one-to-one mapping, P̂ (W ) can be computed as follows:

P̂ (W ) =
MY
k=1

P̂ (GkjG1; : : : ;Gk�1) P̂ (gkjGk) (B.4)

where fG : gk �! Gk. As for the word class case, the estimation is performed in two steps. First, a
robust and reliable estimate P̂ (GkjG1; : : : ;Gk�1) is obtained and then P̂ (gkjGk) gives the probability of
subsequence wi; : : : ; wj given the phrase set Gk.
As a whole, the same calculation schema for both for word class and selected-phrases is a viable approach
for the application of these concepts into VNSA automata for language modeling.
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Figure 3: Example of a bi-gram network that approximates a full bigram network.
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Language Model 

Wo
rd 

Err
or 

Ra
te 

Unigram Language
     Model

Bigram Language
     Model

Class Trigram Language
       Model

Class Fourgram Language
        Model

Figure 10: Word error rate vs VNSA models.
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model order
2 3

VNSA 18.95 14.91
Katz 19.09 14.72

Table 1: Test set perplexity comparison between Katz's model and VNSAs.

set type VNSA order
2 3 4 5

T 18.95 14.91 13.92 14.01
T � 17.44 12.17 12.24 12.40
Tf 12.38 9.05 8.78 8.87

Table 2: Test set perplexity for add� c method.

set type VNSA order
2 3 4 5

T 21.12 18.95 21.19 23.08
Tf 13.39 11.16 11.72 12.36

Table 3: Test set perplexity for add� 1 method.

set type VNSA order
2 3 4 5

T 19.45 15.62 15.92 16.34
Tf 12.37 9.53 9.49 9.66

Table 4: Test set perplexity for sub� 1 method.

set type VNSA order
2 3 4

(�opt = 0:08) (�opt = 0:2) (�opt = 0:3)
T 19.44 14.69 14.51
Tf 12.68 9.37 9.08

Table 5: Test set perplexity for uniform linear method.
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set type tsh

0 1 2 3 4
T i 16.02 16.17 16.34 16.55 16.79
T i

f
10.24 10.51 10.68 10.82 10.91

Table 6: Development set perplexity of a third order VNSA for di�erent pruning tresholds.

set type tsh

0 1 2 3 4
T i 16.13 15.88 16.00 16.12 16.26
T i

f
10.08 10.10 10.13 10.19 10.26

Table 7: Development set perplexity of a fourth order VNSA for di�erent pruning tresholds.

tsh

0 1 2 3 4
state number 19877 11842 9339 8113 7388
transition number 133562 95727 82438 75386 70936

Table 8: State and transition number for the VNSAs in tab.6

tsh

0 1 2 3 4
state number 81538 53259 46459 43401 41641
transition number 398330 275193 244296 229993 221508

Table 9: State and transition number for the VNSAs in tab.7

Computer Speech and Language, 1996 10 265-293



References

[Austin, 1991] S. Austin, R. Schwartz & P. Placeway. The forward-backward search algorithm. In IEEE

Int. Conf. Acoust., Speech, Signal Proc., pages 697{700, 1991.

[Bahl, 1983] L. R. Bahl, F. Jelinek & R. Mercer. A maximum likelihood approach to continous speech
recognition. In IEEE Trans. on Pattern Analysis and Machine Intelligence Proc., pages 179{190,
1983.

[Baum, 1972] L.E. Baum. An inequality and associated maximization technique in statistical estimation
of probabilistic functions of markov processes. Inequalities, 3:1{8, 1972.

[Bell, Cleary & Witten, 1990] T. Bell, J. Cleary, I. H. Witten. Text Compression. Prentice Hall, 1990.

[Bocchieri, Riccardi & Anantharaman, 1995] E. Bocchieri, G. Riccardi, J. Anantharaman. The AT&T
ATIS CHRONUS recognizer. In Workshop on Spoken Language Technology Proc., 1994.

[Brown et al., 1990] P. Brown et al. . A statistical approach to machine translation. Computational

Lingustics, 16(2):79{85, 1990.

[Brown et al., 1992] P. Brown, P. de Souza, R. Mercer, V. Della Pietra, J. Lai. Class-based n-gram
models of natural language. Computational Lingustics, 18(4):467{479, 1992.

[Fano, 1961] R. M. Fano. Transmission of information: a statistical theory of communications. Wiley,
1961.

[Giachin, 1995] E. Giachin. Phrase bigrams for continous speech recognition. In IEEE Int. Conf. Acoust.,

Speech, Signal Proc., pages 225{238, 1995.

[Good, 1953] I.J. Good. The population frequencies of species and the estimation of population param-
eters. In Biometrika, 40, pages 237{264, 1953.

[Jelinek, 1976] F. Jelinek. Continous speech recognition by statistical methods. In Proc. IEEE, pages
532{556, 1976.

[Jelinek, 1980] R. L. Mercer F. Jelinek. Interpolated estimation of markov source parameters from sparse
data. In Pattern Recognition in Practice, pages 381{397, 1980.

[Katz, 1987] S. M. Katz. Estimation of probabilities from sparse data fro the language model component
of a speech recognizer. In IEEE Trans. Acoust., Speech, Signal Proc., pages 400{401, 1987.

[Kneser & Ney, 1993] R. Kneser and H. Ney. Improved clustering techniques for class-based statistical
language models. In EUROSPEECH, European Conference on Speech Communication and Tech-

nology Proc., pages 973{976, 1993.

[Magermann & Marcus, 1990] D. Magermann and M. Marcus. Parsing a natural language using mutual
information statistics. In AAAI Proc., pages 984{989, 1990.

[Ney & Essen, 1993] H. Ney and U. Essen. Estimating small probabilities by leaving-one-out. In EU-

ROSPEECH, European Conference on Speech Communication and Technology Proc., pages 2239{
2242, 1993.

[Pereira, Tishby & Lee, 1993] F. Pereira, Naftali Tishby, Lillian Lee. Distributional clustering of english
words. 30th Ann. Mee. of the Ass. for Computational Linguistics, pages 183{190, 1993.

[Pereira, Riley & Sproat, 1994] F. Pereira, M. Riley, R. Sproat. Weighted rational transductions and
their applications to human language processing. In Workshop on Human Language Technology

Proc., pages 249{254, 1994.

Computer Speech and Language, 1996 10 265-293



[Pieraccini & Levin, 1992] R. Pieraccini, E. Levin. Stochastic representation of semantic structure for
speech understanding. In Speech Communication, volume 11, pages 283{288, 1992.

[Pieraccini & Levin, 1994] R. Pieraccini E. Levin. CHRONUS, the new generation. In Workshop on

Spoken Language Technology Proc. , 1994.

[Placeway, Schwartz, Fung & Nguyen, 1993] P. Placeway, R. Schwartz, P. Fung, L. Nguyen. The esti-
mation of powerful language models from small and large corpora. In IEEE Int. Conf. Acoust.,

Speech, Signal Proc., pages 33{36, 1993.

[Rabiner & Juang, 1993] L. Rabiner, B.H. Juang. Fundamentals of Speech Recognition. Prentice Hall,
1993.

[Riccardi, Bocchieri & Pieraccini, 1995] G. Riccardi, E. Bocchieri, R. Pieraccini. Non deterministic
stochastic language models for speech recognition. In IEEE Int. Conf. Acoust., Speech, Signal

Proc., pages 237{240, 1995.

[Soong, 1990] F. Soong & E. Huang. A tree-trellis based fast search for �nding the n-best sentence
hypotheses. In Workshop on Speech and Natural Language Proc., 1990.

[Stone, 1974] M. Stone. Cross validatory choice assessment of statistical predictions. Royal Statistical

Society, Sec. B:111{147, 1974.

[Witten & Bell, 1991] I.H. Witten, T. C. Bell. The zero frequency problem: Estimating the probabilities
of novel events in adaptive text compression. In IEEE Trans. on Information Theory, pages 1085{
1093, 1991.

Computer Speech and Language, 1996 10 265-293


