A Spontaneous-Speech Understanding System For Database
Query Applications

Roberto Pieraccini and Esther Levin

Speech Research Department
AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, NJ 07974, USA

ABSTRACT

In 1991 we proposed a new approach to the problem
of speech understanding. The approach was called
CHRONUS (Conceptual Hidden Representation Of
Natural Unconstrained Speech) and was based on a
stochastic representation of meaning and language.
Only at the end of 1994 could we prove that a speech
understanding system based on CHRONUS can be
developed by a small team in a short time and still
outperform traditional systems that required years of
tuning. In this paper we will explain how CHRONUS
allowed us to achieve two important goals: to score as
the best natural language system at the 1994 ARPA
ATIS evaluation and to start a new general framework
for approaching the problem of language understand-
ing.

1. INTRODUCTION

A spoken language understanding system converts
speech into actions. In this specific application the in-
put is a sequence of utterances requesting information
stored in a database, and the action is the extraction
of the requested database tuples. Every input sen-
tence is interpreted in the context of the previous sen-
tences. With the input being spontaneous speech, the
problems are more related to the phenomena gener-
ally present in common spoken language rather than
to the intrinsic ambiguity and complexity of language.
A spontaneously spoken sentence generally contains
false starts, abrupt changes of subject, ungrammati-
calities, noise, but generally does not contain complex
recursive forms, and ambiguities are easily resolved
by the knowledge of the domain. Traditional parsers
generally fail to analyze whole spontaneous sentences
that cannot be interpreted according to conventional
grammars. However, portions of those sentences are
often grammatical and their meaning is comprehen-
sible to a human listener. We proposed in 1991[3] a
new approach that was called CHRONUS (Concep-
tual Hidden Representation of Natural Unconstrained

Speech). CHRONUS is based on a communication
paradigm that considers a spoken utterance as a noisy
version of the meaning it was intended to convey.
Meaning is represented by a sequence of elemental
units called concepts. Conceptual decoding consists
in detecting concepts in an utterance given the acous-
tic observation. With some general assumptions the
model can be put in the form of a hidden Markov
model (HMM [5]) whose states represent concepts
and are characterized by concept conditional stochas-
tic language models (e.g. n-grams). CHRONUS was
tested several times on the ARPA ATIS [1], [2] task
(a standard task based on an airline database) with
a performance that was substantially inferior to that
of more conventional systems. The reason of this was
that although the conceptual decoding per se was ex-
tremely accurate [4], the inaccuracy of the other com-
ponents of the system was detrimental to the overall
performance. At the beginning of 1994 we started
rebuilding the whole system with the following prin-
ciples in mind:

o Locality. The analysis of a sentence as a whole is
delayed as much as possible and it is demanded
to a single module (the interpreter).

o Learnability. Everything that can be learned
from available data should. A corpus is an in-
valuable source of knowledge that can be used
for training the models used at different stages
of processing.

o Patchability. The designer of a system should be
able to introduce knowledge that either cannot
be learned from data or is already available.

o Separation among algorithms, general and task
specific knowledge. This makes the system suit-
able for incremental improvement.

o Habitability. Rather than attempting to model
complex and rare linguistic events, a system has
to be robust against unexpected non lLinguistic
phenomena and speech recognizer mistakes.

The new system, whose functional diagram can be
seen in Fig. 1, represented for us the attainment of
two most important goals: the achievement of the
highest accuracy in the natural language test of the
1994 ARPA ATIS [9] evaluation, and the development
of a first prototype of a general toolkit for the design
of speech understanding systems in the same applica-
tion class. In the rest of the paper we will give a brief

LATTI CE OF =
SENTENCE LEXI CAL CONCE
TRANSCR! PTI ON HYPOTHESES SEGVENTATI ON
SPEECH / /
SPEECH LEXICAL CONCEPTUAL
™| RECOGNIZER [™| ANALYZER DECODER
DATABASE TEMPLATE
~*—| |NTERFACE [| NTERPRETER «— GENERATOR [

SET OF
TUPLES

Etirabay LOCAL MEANI NG

REPRESENTATI ON

REPRESENTATI ON

Fig. 1. A functional diagram of CHRONUS, the
AT&T speech understanding system

description of the modules the current CHRONUS is
made of, especially in terms of portability to other
tasks, and discuss the overall performance of the sys-
tem. In this paper we do not discuss the speech rec-
ognizer, whose description can be found in [7], [8].

2. THE LEXICAL ANALYZER

The function of the lexical analyzer is that of cre-
ating a lattice of word hypotheses out of a string of
words (i.e. the transcription of speech into words gen-
erated by the speech recognizer [8]). The different
hypotheses in the lattice correspond to possible inter-
pretations of words and/or phrases according to pre-
defined semantic categories. Most of the categories
correspond to classes of attributes of the database.
Some of them (like numbers) are so general that may
be ported across different applications, others (like
city or airport) are more specific. Function words
are also merged into semantic categories. The sin-
gular and plural forms of words, for instance, consti-
tute a category as well as different verb inflections.
This both reduces the effective size of the lexicon and
enhances the robustness of the stochastic conceptual
representation [3], especially against recognition er-
rors (speech recognizers are likely to confuse among
different inflections of the same word). Common id-
ioms can also be taken care of at this level, for in-
stance phrases like the bay area can be substituted
with San Francisco and San Jose by the lexical an-
alyzer. Numbers and acronyms are grouped in all
the possible ways, each one of them constituting a

separate lattice hypothesis. The lexical analyzer is
completely general and a new application can be de-
veloped by simply updating the vocabularies. Each
vocabulary corresponds to a category (e.g. airport
names, aircraft names, numbers, etc.) and each en-
try represents, through a regular expression, all possi-
ble idiomatic variants (e.g. J.F.K., Kennedy Airport,
Kennedy International Awrport, New York City Inter-
national Airport, etc.).

3. THE CONCEPTUAL DECODER

As remarked in the introduction the idea behind
the conceptual decoder is that of treating a sentence
as a sequence of phrases corresponding to units of
meaning called concepts. The sequence of concepts
is modeled by a Markovian process (a first order pro-
cess in the current implementation). The sequence of
words that forms a phrase related to a given concept
is also modeled by a Markovian process represented
by a concept conditional n-gram language model. In
the current implementation the concept conditional
language models are bigram back-off networks [7].
The overall model is called conceptual HMM [3]. The
function of the conceptual decoder is that of segment-
ing a sentence into phrases and assigning each phrase
to the correspondent concept. This translates into
finding the most likely sequence of states in the con-
ceptual HMM given the lattice produced by the lex-
ical analyzer and it is implemented as a finite state
automata intersection operation as explained in [6].

There are two problems in designing a concep-
tual decoder for a given application: the choice
of the conceptual units and the training of the
conceptual HMM. The choice of the conceptual
units generally requires a good knowledge of the
task. Most of the units generally correspond
to entities of the database. For instance, 1n
the ATIS task there are units like destination,
origin, ground-transportation, aircraft_type,
meal, departure_time, arrival _time, etc. The level
of detail of the units is generally a compromise be-
tween the resolution of the decoder and the robust-
ness of the resulting model, given the amount of
training data that is available. For instance one
could choose of representing both departure city
and departure_airport as two separate concepts,
being two different entities of the underlying rela-
tional database. But the structure of the phrases ex-
pressing both concepts are so similar that it does not
make any sense to distinguish among them at this
level. Sometimes phrases alone do not allow to dis-
tinguish among different concepts. For instance in
a sentence like show me the flights to Boston in the
morning, there are no clues on whether the phrase

in the morning has to be related to departure time
or arrival _time, unless we use some conventional
knowledge. Although the conceptual HMM could in
principle learn to distinguish between the two, pro-
vided that enough training sentences of this kind are
available, our choice was to define broad conceptual
units (e.g. time and origin) and to demand the res-
olution of ambiguities to the interpretation module.

Some of the conceptual units, like question,
subject, dummy, are quite general and related to the
structure of the sentence rather than to the entities
in the database.

Training a conceptual HMM implies providing a
considerable amount of examples of conceptual seg-
mentations and running a Viterbi training [5] algo-
rithm in order to estimate the parameters of the
model. Of course the most cumbersome part is pro-
viding examples of segmentations, namely segment-
ing by hand thousands of sentences. This can be
enormously alleviated by setting up a training loop
procedure [4]. The training loop consists in segment-
ing an initial amount of sentences (we started with
about 500 sentences). The initial model estimated
via the initial sentences is used in a first prototype
of the whole understanding system in order to gener-
ate the answers to all the available training sentences.
If an automatic evaluation procedure is available?!, it
can be used for extracting from the corpus only those
sentences that produced a wrong answer. Some of
these sentence may have been given a wrong segmen-
tation by the prototypical conceptual decoder that
can be corrected by hand. With the assumption that
the segmentation of the rest of the sentences is cor-
rect, only a small percentage of sentences have to be
inspected and hand segmented. Using this procedure
more than 7,000 sentences were used for estimating
the parameters of the models for the ATIS task.

4. TEMPLATE GENERATOR

The template generator produces a representation
of the sentence meaning in the form of a template,
i.e. an unordered set of keyword/value pairs (to-
kens) [4], starting from the segmentation produced
by the conceptual decoder. Most tokens correspond
to attributes of the database and their values. For in-
stance the token DEPARTURE CITY: SSFO corresponds
to setting the attribute departure city to the value
SSFO (i.e San Francisco). There are tokens that act
as modifiers and are recognized either by the inter-
preter or by the database interface. Examples of this
are the token QUESTION whose value YES-NO instructs

1The evaluation procedure used in the ATIS project consisted
in associating each answerable sentence with the set of tuples
that constitute the correct reference answer, and comparing
the output of the system with it [2]

the database interface to produce a yes/no answer,
or the token DEPARTURE PERIOD whose value modifies
any DEPARTURE_TIME token in the same template to
AM or PM accordingly. The information that has
been requested is specified by SUBJECT tokens whose
values have a direct correspondence to the attributes
of the database.

The template generator consists of a set of pro-
grammable finite state transducers implemented as
finite state machines with regular expressions and
functions on their arcs. The transducers are cur-
rently programmed by hand. However they are gener-
ally extremely simple for most of the concepts. Only
few concepts, like time, need complicate transducers,
that once designed can be reused for other applica-
tions.

5. THE INTERPRETER

The function of the interpreter is to resolve the
ambiguities that are present in the template. One
source of ambiguity is caused by the non locality of
the information: some information that modifies a
concept can be present in other parts of the same
sentence or in previous sentences (context dependent
sentences). The modification of tokens by means of
other tokens in the same sentence is performed by a
set of rules most of which are of the kind:

if (TEMPLATE.there_is(TOKEN1) &&
TEMPLATE. there_is(TOKEN2)) {
TEMPLATE. append (TOKEN3) ;
TEMPLATE .remove (TOKEN1); }

To deal with context dependent sentences the inter-
preter merges the current template with the previ-
ous one, according to merging rules defined for each
class of tokens. For instance, if DEPARTURE TIME is
both in the current and in the previous template, only
the most recent is selected to form the current query.
Similarly if a new origin and destination is given in
the current sentence, all the tokens corresponding to
the previous sentence are deleted.

The design of the interpreter is where most of the
human labor is needed. The interpretation rules are
written by hand and special care should be taken in
order for them not to contradict each other. A corpus
and an evaluation procedure are very useful for the
development of this module, since they allow to set
up an automatic way of measuring the effectiveness
and the consistency of each newly introduced rule. In
the development of the ATIS interpreter every time
new rules were introduced the system was evaluated
on several corpora (about 5,000 sentences) including
1,000 sentences of the Dec.93 test set. Fig. 2 shows

the percentage of correct sentences in almost 70 ex-
perimental runs during the three months in which the
ATIS interpreter was developed.

95

90

85

NL accuracy %
(2] ~ ~ o«
ul o ul o

@
=]

I
10 20 30 40 50 60 70

55 I I
0

runs on Dec93 test set
Fig. 2. Incremental performance during the ATIS

system development

6. THE RELATIONAL DATABASE
INTERFACE

The relational database interface takes the mean-
ing representation in the form of a template and ex-
tracts the requested information from the database.
The conventional way of doing this consists in writing
a set of transcription rules that transform the tem-
plate into an SQL statement. The complexity of this
approach is high, and the resulting code is hard to
maintain and to port to other applications. In our
approach the relational database is represented by a
network that can be easily derived from the database
schema. The network is navigated through a con-
straint propagation algorithm that extracts the proper
tuples.

7. RESULTS AND CONCLUSIONS

The system was formally tested in the official De-
cember 1994 ARPA ATIS evaluation. The perfor-
mance in the three standard tests is reported in Fig. 3
and compared with that of the other sites participat-
ing in the same test.

SPREC is the accuracy of the speech recognizer [8]
(% of correct words), NL is the overall percentage of
correctly answered sentences of the natural language
component alone (i.e. the system input was the tex-
tual transcription of each sentence), and SLS is the
overall percentage of correctly answered sentences for
the complete systems (i.e. the system input was the
actual speech). The performance of our system in

MITRE (55.3)
UNISYS (36.3)

MITRE (41.7) BBN (16.5)
UNISYS (33.5) MIT (13.1)
MITRE (14.8) BBN (13.0) SRI (12.7)
11 —F
O SRl
10 -
S T AT&T
owu 8
Es o+
&
g7 o MIT
4 cMU o
s |
- O AT&T
MIT
G5 4 o
O
@
] UNISYS O
a4 T
@ AT&T, BBN
3 L cmu
s O SRI
| | |
I I I
SPREC NL SLS

Fig. 3. Error rates reported by different sites in the
1994 ATIS test

the NL test is the highest compared to the other sys-
tems. However more important than the actual per-
formance on the ATIS task is the flexible architecture
we developed that not only allowed us to build a high
performance system in a very short time, but possibly
allows for a rapid development of other applications.

8. REFERENCES

[1] Price, P. J., “Evaluation of Spoken Language Systems:
the ATIS Domain,” Proc. of 3rd DARPA Workshop on
Speech and Natural Language, pp. 91-95, Hidden Valley
(PA), June 1990.

[2] MADCOW, “Multi-Site Data Collection for a Spoken
Language Corpus,”, Proc. of Fifth Darpa Workshop on
Speech and Natural Language, Harriman, NY, Feb 1992.

[3] Pieraccini, R., Levin, E., “Stochastic Representation of
Semantic Structure for Speech Understanding,” Speech
Commaunication, Vol.11 pp. 283-288, 1992.

[4] Pieraccini, R., Levin, E., “A learning approach to natu-
ral language understanding,” NATO-ASI, New Advances
& Trends in Speech Recognition and Coding, Springer-
Verlag, Bubion (Granada), Spain, 1993.

[5] Rabiner L. R., Juang, B.-H., “Fundamentals of Speech
Recognition,” PTR Prentice-Hall, Inc., 1993.

[6] Pereira, F., Riley, M. D., Sproat, R., “Weighted rational
transductions and their application to human language
processing,” ARPA Human Language Technology Work-
shop, Princeton, NJ, March 1994.

[7] Riccardi, G., Bocchieri, E., Pieraccini, R., “Non Deter-
ministic Stochastic Language Models for Speech Recogni-
tion,” TCASSP 95.

[8] Bocchieri, E.L., Riccardi, G. Anantharaman, J., “The
1994 AT&T ATIS CHRONUS Recognizer,” Proc. of 1995
ARPA Spoken Language Systems Technology Workshop,
Austin Texas, Jan. 1995.

[9] Levin, E., Pieraccini, R. “CHRONUS, The Next Gener-
ation,” Proc. of 1995 ARPA Spoken Language Systems
Technology Workshop, Austin Texas, Jan. 1995.

