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Abstract

In this paper we propose a learning paradigm for the prob-
lem of understanding spoken language. The basis of the
work is in a formalization of the understanding problem as
a communication problem. This results in the definition
of a stochastic model of the production of speech or text
starting from the meaning of a sentence. The resulting un-
derstanding algori thm consists in a Viterbi maximization
procedure, analogous to that commonly used for recogniz-
ing speech. The algorithm was implemented for building a
module, called conceptual decoder for the decoding of the
conceptual content of sentences in an airline information
domain. The decoding module is the basis on which a com-
plete prototypical understanding system was implemented
and whose performance are discussed in the paper. The
problems, the possible solutions and the future directions
of the learning approach to language understanding are
also discussed in this paper.

1. Introduction - The problem of
understanding language

Generally the label understanding system is granted to
those pieces of software that prove some abilities to suc-
cessfully interact with a, more or less trained, human being
using a, more or less restricted, subset of natural language.
The most populated category of those systems, also called
natural language interfaces, corresponds to machines that
are designed to retrieve information when provided with a
question in natural language. How to build a natural lan-
guage interface is quite well understood [6] provided we
have enough knowledge about the characteristics of the
specific subset of the language used in the application.
Those characteristics are specified through grammars that
are build in general by hand and strongly depend on the
application task. Unfortunately for any specific language
we may consider there is not such a thing like a general
grammar that covers all the possible applications. It is
quite clear that even though we had a general grammar of a
language, it needed a sort of adaptation for dealing with a
particula task. The problem is even more serious when we
deal with spontaneous speech rather than with written lan-
guage. Spontaneous speech is often ungrammatical, and
idiomatic. Besides, in spoken language, there are phenom-
ena like false starts and broken sentences that do not ap-
pear in written language. The idea of building a machine
that is able of learning how to understand is thus rather
appealing, but cannot be implemented without a substan-
cial training corpus of proper examples of sentences and
dialogues. The availability of the corpus is as impotant
as the theory for developing the learning strategy. The
evidence of this statement is supported by the recent his-
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this method in handling large vocabulary speaker inde-
pendent continuous speech. In fact when the 1000-word
Resource Management database was designed and made
available within a DARPA project [9], the algorithms pre-
viously developed by many researchers were compared and
refined in order to get maximum performance on a com-
mon task, although an undoubted portion of the success
can be ascribed also to the huge increase in the power
of the computers, allowing now to develop training algo-
rithms able to estimate models from hours and hours of
speech. However, while it is easy (although not trivial)
to agree on which is the amount of information necessary
to include in a speech corpus in order to be able to use
it for learning acoustic models (generally the trascription
of sentences into words carries enough information for es-
timating phonetic HMMs), when semantics is taken into
account it is very hard to find a common suitable repre-
sentation. This is because the kind of representation used
for the meaning of a sentence depends generally on the
particular understanding system that is being developed.
However, the DARPA ATIS corpus [15] that was designed
for the development of speech understanding systems is a
good set of data for developing and testing some of the
learning theories, and although it does not contain any
explicit representation of the meaning of sentences, it con-
tains other useful related informations that can be used
within the framework of a learning strategy.

2. Understanding as a translation
process

A natural language understanding system is a machine
that produces an action as the result of an input sentence
(speech or text). Recently, several researchers proposed to
look at the understanding process as to a translation (or
transduction) process (see Fig. 1) composed of two func-
tional blocks. The first, called semantic translator, an-
alyzes the input sentence in natural language (N-I) and
generates a representation of its meaning in a formal se-
mantic language (S-L). The action transducer converts the
meaning representation into statements of a given com-
puter language (C-L) for executing the required action.

While the input natural language is given, and very little
can be done for adapting it to our system except impos-
ing constraints, we have the choice of designing the for-
mal semantic language in order to make easier the task
of building both the semantic translator and the action
transducer. However, the boundary between the first and
the second module is quite arbitrary. In [30], for instance,
an automatic system is designed for translating English
sentences directly into SQL queries, and in [16] there is an
example of a system that goes from an English sentence



we may find that learning the parameters of the seman-
tic translator becomes quite a difficult problem when the
application entails a rather complex semantics.
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Figure 1: Understanding as a translation process

The choice of the semantic language strongly influences
the performance of the understanding. For instance, it
must be powerful enough to allow the representation of
the semantics of the possible sentences in the applica-
tion, even in presence of complex linguistic phenomena
like relative and embedded clauses, and it should allow
the implementation of a mechanism for the resolution of
anaphoric and elliptical references. A semantic language
with these characteristics must have, at least, the repre-
sentation power of a context free grammar, thus allowing
to represent the meaning of a sentence in the form of a
tree [2] or of a network [5]. However, the complexity of
the algorithms required for dealing with context free gram-
mars, like for instance the inside-outside algorithm [4, 25]
and the lack of training data for a specific language un-
derstanding application tend to convince the reasearchers
to use a simpler approach. Moreover, if one analyzes the
individual sentences that a subject asks in a conversation
whose goal is to get some information from a database,
very rarely one finds complicated constructs and subordi-
nated clauses. Rather there are strong ungrammaticalities
and hesitations, but quite often the sentences can be eas-
ily segmented into phrases, each one of them specifying a
distinct concept. This is the observation that led to sev-
eral prototypical learning systems [19, 22, 21]. The main
assumption on which those systems are based can be ex-
pressed in the following terms. The meaning of a given
sentence can be expressed by a sequence of meaning units,
and this sequence can be put in sequential correspondence
with portions (phrases) of the sentence. Of course this is
a very strong assumption and it does not take an expert
linguist for finding lots of examples in any language that
violate this assumption. However, in limited but realisti-
cally defined semantic contexts this assumption holds for
the majority of sentences. An example of this kind of rep-
resentation is shown in Table 1. In the shown examples
the meaning of a sentence is represented by a sequence of
keyword/value pairs m; = (kj;,v;), where k; € T = {y;},
is a conceptual category (i.e. a concept like for instance
origin of a flight, destination, meal) and v; is the value
with which k; is instantiated in the actual sentence (e.g.
Boston, San Francisco, breakfast).

2..1 ATIS: an Example of a Speech Un-
dertstanding Corpus
A relatively large corpus expressively designed for speech

understanding (but not for learning) is being developed

within the DARPA ATIS project [15]. ATIS stands for Air

Travel Information System and the task is built around
a subset of the OAG (Official Airline Guide) database,
including 10 American cities. A corpus of spontaneous
sentences is being collected and annotated by different
sites [23]. The corpus is collected through a Wizard of Oz
paradigm. Each subject is given a scenario and a travel
planning problem to solve. The subjects are requested to
solve the problem by interacting with a machine (that is
actually a human wizard). The partial and the final re-
sponses of the machine are presented to the subjects via a
display or a speech synthesizer. The sentences uttered by
the subjects are recorded, transcribed and annotated care-
fully. Although the ATIS corpus may not be the best cor-
pus for testing a semantic learning paradigm, it is readily
available and it includes some kind of meaning annotation
that can be indirectly used for our purpose.

Assessing the performance of a language understanding
system 1is still an open problem mainly because the con-
cept of correct answer is generally ambiguous and must
be based on defined conventions that are not task inde-
pendent. The DARPA community agreed upon scoring
answers, within the ATIS task, by comparison with given
reference answers that are produced for each valid sentence
of the corpus. Of course the problem of the definition of
a correct answer still remains. For instance, for a question

like

SHOW THE LATE EVENING FLIGHTS BE-
TWEEN BOSTON AND DALLAS

the correctness of the answer depends upon the conven-
tional definition of late evening. Then, once a time interval
has been defined for late evening, it is still not clear what
is the information to be listed. It could be the airline and
flight number of each flight, but it could also include the
departure time, the arrival time, the fare, and so on. A
special committee within the DARPA community agreed
upon a certain number of rules, called principles of inter-
pretation [23], that should rule the majority of cases. Be-
sides, it was also agreed on using two reference answers,
namely a minimal and a mazimal reference answer. An
answer is thus considered correct if it contains all the in-
formation included in the minimal reference answer and no
more than the information included in the maximal refer-
ence answer.

3. Formalization of the Understanding
Problem - the Stochastic Approach

The stochastic approach to language understanding
(see [19, 27, 26, 28]) is based on the noisy channel
paradygm that was introduced for formalizing the general
speech recognition problem in [3] and that constitutes to-
day the theoretical basis of most of the current working
speech recognizers. A version of this paradigm was re-
cently proposed for formalizing the problem of automatic
translation between two languages [10]. We use the same



BOSTON

SHOW ME THE FLIGHTS TO | (question,display) (subject,flight) (destin,BBOS)

FLIGHT FROM ATLANTA

HOW MUCH IS THE PRICE OF THE | (question,display) (subject,fare) (destin,MATL)

FPLIGHT?

IS BREAKFAST SERVED ON THE | (question,yes-no) (subject,breakfast)

Table 1: Example of keyword/pair representations of simple phrases within the ATIS domain.

paradigm for formalizing the problem of speech/text un-
derstanding [19]. The first assumption we make is that
the meaning of a sentence can be expressedby a sequence
of basic units M = g, 2, ..., un, and that there is
a sequential correspondence between each y; and a subse-
quence of the acoustic observation A = ay,a2...an,,
so that we could actually segment the acoustic signal into
consecutive portions, each one of them corresponding to a
phrase that expresses a particular p;. The second assump-
tion consists in thinking of the acoustic representation of
an utterance as a version of the original sequence of mean-
ing units corrupted by a noisy channel whose characteris-
tics are generally unknown. Thus, the problem of under-
standing a sentence can be expressed in this terms: given
that we observed a sequence of acoustic measurements A
we want to find which semantic message M most likely
produced it, namely the one for which the a posteriori
probability P(M | A) is maximum. Hence the problem of
understanding a sentence is reduced to that of maximum a
posteriori probability decoding (MAP). This formulation
of the understanding problem leads to the maximization
of the product of three factors, namely:

max P(A|W)P(W | C)P(C) (1)

)

The first one, the acoustic model P(A | W), is the
probability of a sequence of acoustic observations given
a sequence of words. Models for the maximization of
this probability are well undertstood, and are gener-
ally implemented in the form of acoustic Hidden Markov
Models [3, 31]. The second term, the syntactic model
P(W | C), is the probability of a sequence of words
W = wy,...,wn,, given a sequence of conceptual labels
C=ci1,...,tNy, ¢ €. And finally, the semantic term
P(C) expresses the probability of a sequence of concep-
tual labels. The syntactic and the semantic terms can
be combined in a single model that, with some additional
assumptions takes the form of a Hidden Markov Model
whose states correspond to conceptual labels and whose
obervations are sequences of words modeled, for each state,
with a bigram language model. Formally the conceptual
model is defined by a set of states I' = {y1,7v2,...7n}, a
set of concept conditional bigrams P(w; | w;_1,7;) and the
concept transition probabilities P(v; | 7i—1). Then, given
a sequence of words the sequence of conceptual labels can
be recovered by means of Viterbi decoding.

3..1 Training the Conceptual Model

Once the concept dictionary has been designed, based on
the knowledge of the task, the concept conditional bigrams
and the concept transition probabilities can be estimated
from a corpus of training examples. Each training ex-
ample consists of a sentence and the sequence C of as-
sociated conceptual labels. Unfortunately the conceptual
labels must be provided manually for each sentence. The
cost of handlabeling all the sentences in a big corpus can be
comparable and even greater than that of writing a gram-
mar for the application language. If this is the case, there
are no advantages in using a learning system rather than
a traditional one. Thus it becomes important to develop
strategies for reducing the cost of conceptual annotation of
the sentences in a big corpus. The annotation cost can be
reduced either devising a strategy that takes advantage of
all the possible semantically related additional information
that is already in the corpus, or by making the annotation
very simple and performable by non specialized people.
For instance, in the ATIS corpus, the meaning of sen-
tences is not available in a declarative form. Instead, each
sentence is associated with the action resulting from the
interpretation of the meaning, namely the correct answer.
One way of using this information for avoiding the handla-
beling and segmentation of all the sentences in the corpus
consists in creating a training loop in which the provided
correct answer serves the purpose of a feedback signal. In
practice all the available sentences are analyzed by the un-
derstanding system obtained with an initial estimate of the
conceptual model parameters. The answers are then com-
pared to the reference answers and the sentences are di-
vided into two classes. The correct sentences, for which we
assume that the conceptual segmentation obtained with
the current model is correct, and the problem sentences.
Then the segmentation of the correct sentences is used for
reestimating the model parameters, and the procedure is
repeated again. The procedure can be repeated until it
converges to a stable number of correct answers. Even-
tually, the remaining problem sentences are corrected by
hand and included in the set of correct sentences for a
final iteration of the training algorithm. This procedure
proved effective for reducing the amount of handlabeling.
In the experiment described in [27] we showed that the
performance increase obtained with the described training
loop, without any kind of supervision (the remaining prob-
lem sentences were excluded from the training corpus) is
equivalent to that obtained with the supervised smooth-
ing. This means that the training loop, although is not



able to learn radically new expressions or new concepts, is
able to reinforce the acquired knowledge and to infer the
meaning of semantically equivalent words. Of course the
training loop cannot solve completely the annotaion prob-
lems. We noticed that more than 20% of the sentences
in a corpus must be manually inspected and conceptu-
ally annotated. However the annotation operation can be
made very simple making the semantic language S-L sim-
ple and flexible. The methodology used for annotating
teh ATIS corpus [23] constitutes a good example of this
idea. In fact the annotators rephrase each valid sentence
in an artificial language that is a very restricted form of
English. This pseudo-English rephrasing (called win or
wizard input) constitute the input of a parser, called NL-
parse [12], that unambiguously generates the SQL query.
For instance, for a sentence like:

I'D LIKE TO FIND THE CHEAPEST FLIGHT
FROM WASHINGTON D C TO ATLANTA

The win rephrasing is:

List cheapest one direction flights from Washing-
ton and to Atlanta

and the corresponding associated SQL statement is:

(SELECT DIS-
TINCT flight.flight_.id FROM flight WHERE (flight.flight_id IN (SE-
LECT flight_fare.flight_id FROM flight_fare WHERE flight_fare.fare_id
IN (SELECT fare.fare.id FROM fare WHERE fare.one_direction_cost
= (SELECT MIN ( fare . one_direction_cost ) FROM fare WHERE
fare.fare_id IN (SELECT flight_fare.fare_id FROM flight_fare WHERE
flight_fare.flight_id IN (SELECT f{light.flight_.id FROM flight WHERE
(flight.from_airport IN (SE-
LECT airport_service.airport_code FROM airport_service WHERE air-
port_service.city_code IN (SELECT city.city_code FROM city WHERE
city.city_name = 'WASHINGTON’ )) AND flight.to_airport IN (SE-
LECT airport_service.airport_code FROM airport_service WHERE air-
port_service.city_code IN (SELECT city.city_code FROM city WHERE
city.city_name = 'ATLANTA"’ )))))))) AND (flight.from_airport IN (SE-
LECT airport_service.airport_code FROM airport_service WHERE air-
port_service.city_code IN (SELECT city.city_code FROM city WHERE
city.city_-name = 'WASHINGTON’ )) AND flight.to_airport IN (SE-
LECT airport_service.airport_code FROM airport_service WHERE air-
port_service.city_code IN (SELECT city.city_code FROM city WHERE
city.city_name = 'ATLANTA’ )))));.

Both the SQL query and the win sentence can be con-
sidered semantic representations of the original sentence.
In fact the SQL query is the final target of the under-
standing system and can be unequivocally obtained from
the win sentence through an existing parser. Obviously
the sequential correspondence assumption is strongly vi-
olated for the SQL representation. However a sequential
correspondence can be easily found between the pseudo-
English win sentence and the original message, at least
for the shown examples. Since all the valid sentences
in the ATIS corpus have a win annotation, the pseudo-
English language can be thought of as an alternate candi-
date for the meaning representation in our learning frame-
work. Using win for representing the meaning may lead
to two different solutions. In the first we can think of
developing a system that learns how to translate natural
language sentences into pseudo-English sentences and then
use the existing parser for generating the SQL query. In
the second solution each win sentence in the corpus can
be translated in the corresponding conceptual representa-
tion used for CHRONUS. This translation is unambiguous
(win is an unambiguous artificial language by definition).

A parser can be easily designed for performing the trans-
lation or, simply use CHRONUS itself for performing the
translation?!.

3..2 The Sequential Correspondence As-
sumption

In section 3. we based our formalization of the speech un-
derstanding problem on the assumption that there is a
sequential correspondence between the representation of a
sentence (words or acoustic measurements) and the corre-
sponding representation of meaning. Unfortunately, when
using a simple annotation procedure like the win language,
the sequential correspondence assumption will not hold for
a good percentage of the sentences. A typical example is
constituted by the following sentence:

COULD YOU PLEASE GIVE ME INFORMA-
TION CONCERNING AMERICAN AIRLINES
A FLIGHT FROM WASHINGTON D C TO
PHILADELPHIA THE FARLIEST ONE IN
THE MORNING AS POSSIBLE

whose corresponding win annotation is:

List earliest morning flights from Washington
and to Philadelphia and American.

The problem of reordering the words of win representation
for aligning it with the original sentence is a complex prob-
lem that cannot be solved optimally. Suboptimal solutions
with satisfactory perfomance can be developed based on
effective heuristics. We will not discuss the details of how
the reordering can be put into practice. Rather we want
to emphasize the fact that an iterative algorithm based
on a model similar to that explained in section 3. led to
almost 91% correct alignments between English sentences
and corresponding win representations on a corpus of 2863
sentences. With additional refinements this technique can
be used, integrated in the training loop, for automatically
processing the training corpus of the conceptual model.

3..3 Interfacing with a Speech Recognizer

The most natural way of interfacing the conceptual de-
coder with a speech recognizer is by implementing the
maximization of equation 1. This requires to implement
a decoder that explores a network obtained by explicitly
instantiating acoustic HMMs [13] representing words of
the vocabulary for any concept. For a task like ATIS the
dimension of the resulting network can be rather large.
In theory, if there are 50 conceptual states and about
1,000 words, each one of them represented by a HMM
with an average number of 15 states, the overall network is
bound by a total number of 750,000 acoustic HMM states,
with a number of connections of the order of 50,000,000

Lwin is a subset of natural English. Only a little adaptation

was needed for developing a win translator based on the existing

CHRONUS



(each conceptual conditional bigram model is represented
by 1000 x 1000 connections). Of course not all the bigrams
are observed or even possible in each state. If only those
words and bigrams that were observed during the train-
ing are represented in a conceptual state, a more reason-
able model can be obtained. In an experimental version of
CHRONUS we estimated an integrated model with a total
of 2400 HMM word models (corresponding to about 36,000
HMM acoustic states) and nearly 46,000 connections. This
size of the model can be easily managed by a beam search
recognizer [14]. The problem in using such a model is that
while it constitute a reasonably good model for decoding
the semantic message of a sentence, the limited amount
of training data used for its estimation makes it a quite
coarse model for constraining the speech recognition pro-
cess. When bigrams of words that were not observed in the
training data are actually uttered, the recognizer is forced
to substitute them for known bigrams. Hence the recog-
nition errors are propagated along the sentence, resulting
in relatively poor recognition performance.

Smoothing techniques can be applied for estimating the
probability of unobserved bigrams, like for instance meth-
ods relying on the Good-Turing estimation of probabili-
ties [7]. This will increase the complexity of the model by
allowing all the possible bigrams in each state. However
a factorization of the maximization of equation 1 [20] can
still lead to reasonably good results at an acceptable com-
plexity. Hence several solutions could be implemented,
like best first coupling (the best first recognized sentence
is given to the conceptual decoding), N-best coupling [17]
and word lattice coupling [11].

4. Discussion and Conclusions

In this paper we propose a new paradigm for language
understanding based on a stochastic representation of se-
mantic entities called concepts. An interesting way of look-
ing at the language understanding paradigm is in term of
a language translation system. The first block in Fig. 1
translates a sentence in natural language (N-I) into a
sentence expressed in a particular semantic language (S-
L). The natural language characteristics are generally un-
known, while the semantic language designed to cover the
semantic of the application is completely known and de-
scribed by a formal grammar. The second step consists in
the translation of the sentence in S-L into computer lan-
guage code C-L for performing the requested action. This
second module can be generally (but not necessarily) de-
signed to cover all the possible sentences in S-L, since both
S-L and C-L are known. However, the boundary between
the first and the second module is quite arbitrary. The
subject of this paper deal with the investigation of the
possibility of automatizing the design of the first block
(i.e. the semantic translator) starting from a set of exam-
ples. The semantic language chosen for the experiments
reported in this paper is very simple and consists of se-
quences of keyword/value pairs (or tokens). There is no
syntactic structure in the semantic language we use. Two
sentences for which the difference in the semantic repre-

sentation is only in the order of the tokens are consid-
ered equivalent. In this way we cover a good percentage
of sentences in the domain, but still there are sentences
that would require a structured semantic language. For
instance the two following sentences are indistinguishable
when represented by our semantic language, and obviously
they have a different meaning.

IS THE FEARLIEST FLIGHT GOING TO
BOSTON ON A SEVEN FOUR SEVEN

IS THE FARLIEST FLIGHT ON A SEVEN
FOUR SEVEN GOING TO BOSTON

The representation of this kind of sentences requires a
more sophisticated semantic language that allows the use
of bracketing for delimiting the scope of modifiers.

Although the system we propose uses a very simple
intermediate semantic representation, it can successfully
handle most of the sentences in a database query appli-
cation like the ATIS task. When this simple representa-
tion is used and when the problem of semantic translation
is formalized as a communication problem, a MAP crite-
rion can be established for decoding the units of meaning
from text or speech. The resulting decoder can then be
integrated with other modules for building a speech/text
understanding system.

An understanding system based on a learning paradigm,
like the one proposed in this paper, can evolve according
to different dimensions of the problem. One dimension
goes with the increase in complexity of the semantic lan-
guage S-L. Rather than using a sequential representation
on could think of a tree representation of the meaning.
However, this poses additional problems both in the train-
ing and decoding stage, and requires the use of algorithms
designed for context-free grammars, like for instance the
inside-outside algorithm [4][25] that have a higher com-
plexity that those explained in this paper. Another dimen-
sion of the problem goes toward a complete automatization
of the system, also for those modules that, at the moment,
require a manual compilation of some of the knowledge
sources. One of these modules is the template generator.
Both [22] and [30] report examples of systems where the
decision about the actual values of the conceptual enti-
ties (or an equivalent information) is drawn on the basis
of knowledge acquired automatically from the examples in
the training corpus. The kind of annotation required for
the training corpus is also another dimension along with
the research on learning to understand language should
move. A strategy for learning the understanding function
of a natural language system becomes really effective and
competitive to the current non-learning methods when the
amount of labor required for annotating the sentences in
a training corpus is comparable or inferior to the amount
of work required for writing a grammar in a traditional
system. This requires the development of a learning sys-
tem the does not require any other information than the
representation of the meaning associated to each sentence



(e.g. it does not require an initial segmentation into con-
ceptual units, like in CHRONUS, for bootstrapping the
conceptual models). Moreover, the representation of the
meaning should be made using a pseudo-natural language,
for making easier and less time consuming the work of
the annotators. An example of this kind of annotation
was introduced in section 3..2 with the pseudo-English win
rephrasing. This suggests a possible evolution of the learn-
ing strategy for understanding systems toward a system
starting with the limited amount of knowledge required for
understanding a small subset of the whole language (e.g.
the win language). Then the system can evolve to under-
standing larger subsets of the language using the language
already acquired for rephrasing new and more complex
examples. But, of course, the science of learning to under-
stand is still in its infancy, and many more basic problems
must be solved before it becomes an established solution
to the design of a language interface.
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