
AMICA: the AT&T Mixed Initiative
Conversational Architecture

Roberto Pieraccini, Esther Levin, Wieland Eckert

AT&T Labs - Research, 180 Park Avenue , Floram Park, NJ 07932-0971, USA

{roberto,esther,eckert}@research.att.com

ABSTRACT
In this paper we show how it is possible to design and
implement a general architecture that is suitable for the
rapid development of human/machine natural language,
mixed initiative dialogue systems. The architecture pro-
posed here relies on the assumption that a dialogue sys-
tem can be modularized into different actions or func-
tions that can be designed separately and implement ba-
sic aspects of the dialogue behavior, and a strategy that
is fairly independent of the particular application.

INTRODUCTION
Developers of human/machine natural language dialogue
systems often state that one of the main problems of the
field is that of finding a general framework that would
easily fit different applications, and would allow for a
rapid development of new system. One of the reasons of
this difficulty lies in the lack of separation, in many ex-
isting systems, among the different levels of compe-
tence that intervene during the dialogue activity. When
one looks at the dialogue as the result of logical activity
whose basic rules are independent of the particular ap-
plication, the language, and the medium in question (as
for instance in [5]), the design of dialogue systems be-
comes more of an engineering problem and less of an
art. For instance, in the design of a form filling applica-
tion the dialogue flow is generally represented by a tree
that takes into account all the possible outcomes,. In-
stead one could design a function that implements the
basic logic principle that, when some pieces of informa-
tion is not present in the current memory, the best move
for the system is asking for it.
In this spirit we present AMICA, a general model of a
mixed initiative dialogue system based on the identifica-
tion of a set of general, logically motivated functions,
called dialogue actions. We think that for certain classes
of dialogues there exists a finite (and small) number of
such actions that can be implemented in a general way
and parametrized in order to be used for different appli-
cations.
In this work we restrict the discussion to those dialogue
systems that are devoted to the extraction of information
from a database. For an effective dialogue the machine
needs to be able to accomplish the actions in the follow-
ing inventory:
Understanding: that is the transduction of the user input
(generally written or spoken natural language) into a

formal representation conveying the semantics of the
message.
Verbalization: that consists in transducing the machine
output into a form that is promptly understood by the
user (e.g. natural language). We distinguish between
data verbalization, that requires specific knowledge
about the semantic structure of the domain, and sentence
verbalization that needs general, domain independent,
knowledge.
Contextual Interpretation: consists in the interpretation
of the current user input in terms of the history of the in-
teraction. It includes both dialogue interpretation,
namely the ability of dealing with expectations set by the
machine itself (e.g. disambiguation on the basis of pre-
vious questions asked by the machine), and discourse in-
terpretation, namely the ability of taking into account
the context set by the user during the course of the whole
interaction. In both cases it is necessary to be able to
recognize ambiguity and to formulate disambiguation
questions.
Constraint Consistency Verification: consists in the op-
eration of spotting the presence of inconsistent sets of
constraints provided by the user. These inconsistencies
might be the result of user errors, like false presupposi-
tion, or simply errors of the recognizer.
Data Retrieval: consists in the assembly and submission
of a query to a local or remote database according to the
current information gathered by the system.
Constraining: is the operation the system performs when
asking the user for additional information. This opera-
tion is required due to both the limited bandwidth of the
communication protocol, and the limited capacity of
humans to analyze big sets of data. In general constrain-
ing is required when an under-constrained query pro-
duces too many results. In certain cases it is possible to
predict that a query is under-constrained without actually
accessing the database, for instance by specifying a set
of minimal constraints for each particular topic.
Relaxation: consists in the ability of analyzing the failure
of a database query (i.e. empty set of data), and propos-
ing the user alternative solutions obtained by relaxing
one or more constraints.
Sequencing: is the operation required when presenting a
long list of items that exceed the capability of the band-
width and cannot be further reduced by constraining.
Sequencing should allow the user to navigate through
the list.

EuroSpeech 1997 - Rhodes, Greece, Sept. 1997

Although there are other basic functions the dialogue
system should be able to perform, like for instance am-
biguity resolution and the capability of coping with pos-
sible noisy input (e.g. the errors of a speech recognizer),
we limit here our discussion to the previous functions.
Once these (and maybe other) basic functions of dia-
logue have been defined we need two other components
in order to build a dialogue system, namely a representa-
tion of the current status of knowledge of the machine
(called state [6]), and a mechanism that invokes the re-
quired function when needed, that we call strategy.
In our implementation the strategy is represented by re-
cursive transition network, whose arcs represent condi-
tions on the state, and whose nodes represent handles to
the above mentioned functions.
The idea of implementing the dialogue as a constrain-
ing/relaxation activity can be found in [2], in [4] most of
the functions described here were also and in [5] the idea
of separating the dialogue activity into several levels of
competence, starting with the innermost more general

logical functions is intro-
duced.

DIALOGUE CONTROL
For explaining how the
AMICA architecture works
it is necessary to distin-
guish between dialogue
state (i.e. all the informa-
tion available at a certain
time during the course of
the dialogue) and control
state (i.e. the identification
of a particular situation in
the control flow of the dia-

logue). The dialogue state is identified by the informa-
tion contained in a data structure similar to the one
shown in Figure 1; each field in the dialogue state per-
taining to different kinds of information that, in the cur-
rent implementation, is represented by a flat key-
word/value structure[3].
Control states correspond to the nodes of a graph repre-
senting the strategy, like the one shown in Figure 2. A
control state includes the reference to one of the dia-
logue functions introduced above (represented by the
node labels in Figure 2), and a set of transitions to other
control states that depend on conditions set on the dia-
logue state. Each dialogue function job is to read and
update the current dialogue state. For instance, the dia-
logue function DATA RETRIEVAL reads the current
dialogue state, uses the CURRENT MEANING portion
of the state for building a database query, and writes the
query result (i.e. the set of tuples) in the DATA field.
An example of condition, for instance for the arc labeled
TOO LARGE, could be (N(DATA) > 3), expressing the
condition of a number of retrieved tuples greater than 3.
The basic operation performed by the dialogue controller
consists in:

Invoking the function indicated by the current control
state (this has the effect of updating the current dialogue
state),
Moving to the next state according to the transition that
has a matching condition on the current dialogue state.
An example of a fragment of dialogue drawn from the
ATIS demonstrator is shown in Table 1. Each sentence
in the example is annotated with the dialogue actions
that were used during the processing. For instance, in
order to produce the sentence at turn 7, the controller
went through the DISCOURSE INTERPRETATION
control state where a situation of ambiguity was detected
(arc AMBIGUOUS in Figure 2) and the request for a
disambiguating question was included in the SYSTEM
OUTPUT field of the dialogue state. The SENTENCE
VERBALIZER then produced the requested English
sentence. The example of dialogue state of Figure 1 re-
fers to the situation at the end of turn 9, where the DIA-
LOGUE INTERPETER was able to correctly interpret
the user’s input CITY:BOSTON as GROUND CITY be-
cause the corresponding expectation was set at turn 7.
Hence the correct current meaning is used for formulat-
ing the database query, RETRIEVE the requested data,
and then formulating a request for the VERBALIZER.

PORTABILITY

The process of developing a dialogue system for a new
application is greatly eased by the functional independ-
ence of the various modules that compose the system.
Practically each module can be designed and optimized
independently. Moreover the algorithmic structure of
each module is application independent. This leads to
purely table driven modules: in principle no software has

USER INPUT
CITY: BOSTON

CONTEXT
SUBJECT: GROUND TRANS
ORIGIN: DENVER
DEST: BOSTON
TIM E: M ORNING
AIRLINE: DELTA
CURRENT
SUBJECT: GROUND TRANS
GROUND CITY: BOSTON

EXPECTATIONS
GROUND CITY: ?

DATA
TRANSPORT: TAXI, LIM O,
 RENT-CAR

SYSTEM OUTPUT
SUBJECT: GROUND TRANS
GROUND CITY: BOSTON
TRANSPORT: TAXI, LIM O,
 RENT-CAR

Figure 1: Dialogue State

U N D E R ST A N D IN G

D IA L O G U E
IN T E R P R E T A T IO N

D ISC O U R SE
IN T E R P R E T A T IO N

C O N SIST E N C Y
V E R IF IC A T IO N

M IN IM A L
IN FO R M A T IO N

D A T A
R E T R IE V A L

R E L A X A T IO N
C O N ST R A IN IN G

V E R B A L IZ E R

A M B IG U O U S

N O T C O N SIST EN T

N O M IN IM A L
IN F O R M A T IO N

E M P T Y

T O O L A R G E

A M B IG U O U S

Figure 2: Example of Dialogue Control

to be rewritten for a new application, but only sets of pa-
rameters have to be updated. In the following we will
give a brief description of some of the modules.
Understanding
The understanding module is based on stochastic con-
ceptual models[3]. We enhance the basic stochastic
models by introducing the possibility of including hand-
crafted concept descriptions when those concepts are not
represented in a corpus, and by importing concepts from
other corpora. An interesting point that contrasts
AMICA with other dialogue system is the complete in-
dependence of the understanding system with the dia-
logue. Understanding is seen as a process of transduction
between natural language and a symbolic representation
(in some sense is the analogous of a quantization proc-
ess). The interpretation of the symbolic representation is
demanded to other modules, and can be different for
different applications.
Verbalization
The verbalization process is currently implemented as a
set of sentence templates for the verbalization of sen-
tences like “Please tell me your origin city”. For the ver-
balization of database tuples the process relies on the
semantic description of the domain (corresponding to the
database relational structure) annotated with lexical
items. For instance verbs and prepositions are attached
to pairs of database attributes, like:
FLIGHT_ID flies to DESTINATION_AIRPORT
FLIGHT_ID leaves from ORIGIN_AIRPORT
FLIGHT_ID is served by AIRLINE
FLIGHT_ID uses a AIRCRAFT
These pairs of predicates are organized into a finite state
network that is then used for building sentences with an
arbitrary number of attributes, like
Flight UA706 leaves from Denver, flies to Newark, is
served by United, and uses a Boeing 747.
Discourse and Dialogue Interpretation
Discourse and dialogue interpretation are general mod-
ules based on a set of tables that specify in which way
the current symbolic information derived from the user
input has to be interpreted in the context of past user
(discourse) or system (dialogue) information. An exam-
ple of how this processing is parametrized, is the context
masking table that specifies in which way symbols in the
context are masked by new symbols. For instance, if a
new MONTH symbol is given, it masks MONTH, DAY,
and TIME symbols that might be present in the context.
Similarly and expectation table specifies how ambiguous
information can be interpreted in presence of expecta-
tions set by the system (e.g. questions). For instance a
symbol CITY can be interpreted as DEPAR-
TURE_CITY, ARRIVAL_CITY, or GROUND_CITY,
depending on the value of on or more EXPECTATION
symbols in the current dialogue states. The result of the
discourse and dialogue interpretation modules is a key-
word/value data structure that represents all the current
information provided by the user.
Consistency Verification

This module relies on the structure of the database. A ta-
ble specifies which sets of partial information have to be
verified for consistency. For instance MONTH and DAY
(avoiding mistakes like September 31st), or CITY and
STATE (like Denver, New Jersey). If elements of those
sets are present in the current interpretation, queries are
formed for verifying their consistency in the database,
and output sentences are generated in case of inconsis-
tency (e.g. September 31st is not a valid date).
Data Retrieval
The database retrieval module is probably the most
complex component of a dialogue system that is gener-
ally approached in a ad-hoc fashion. Instead we provide
a mechanism based on the idea of constraint networks
[1] that easily generalizes to any relational database. A
constraint network is a graph that represents a set of
variables that are related by logical constraints. In the
case of a relational database multidimensional variables
represent the values (i.e. tuples) of the relations, and
some variable dimensions (i.e. tuple attributes) are

linked by equality constraints that have to hold (i.e. the
linked attributes correspond to the same entity). This is
shown in Figure 3 where the boxes represent database
relations that assume different roles in the application
(e.g. the relation AIRPORT can assume the role ORI-
GIN and the role DESTINATION)., and the arcs (inter-
nal constraints) represent equality constraints. When ex-
ternal constraints are applied to the network (i.e. a set of
constraints that apply to some of the relations as the re-
sult of a query), an efficient algorithm finds the tuples in
each relation that comply both with external and internal
constraints. The data retrieval algorithm is application
independent and requires only the description of the da-
tabase structure.
Relaxation and Constraining
Relaxion is the process of finding approximate solutions
to a given query. The problem can be approached by us-
ing a metric on the space of the database attributes in or-
der to establish the semantics of ‘distance’ of different
solutions, and also introducing an order in the signifi-
cance of different constraints with respect to the relaxa-
tion operation (e.g. relaxing time and airline is preferable
to relaxing the origin airport). Again the algorithm can
be generalized and parametrized for particular applica-
tions. A relaxation results in an output sentence like:
There are no flights with airline A, but there are flights
with airlines B, C, D, and E.
The constraining operation consists in selecting a con-
straint (and its possible values) to suggest to the user in

F L I G H T
ID D E P A R T A IR P A R R IV A L A IR P

O R I G I N A I R P

ID N A M E C IT Y ID N A M E C IT Y

D E S T I N A T I O N A I R P

F A R E
F L IG H T ID R E S T R IC T IO N C O S T

=

= =

Figure 3: Example of constraint network

order to reduce the number of current solutions to the
query. The significance of different constrains used in
the relaxation is used as well in constraining. This results
in output sentences of the kind: There are too many
flights to list, please choose an airline among A, B, C or
D.
It is worth noticing that the user does not have to answer
the requests of the system at any point during the dia-
logue. For instance, when the airline is requested (as in
the previous example) the user might decide to say: I
don’t care about the airline, I want the earliest flight. In
this case the constraining mechanism is going to be by-
passed at the current turn by the restriction imposed by
the user (the earliest). Both constraining and relaxation
keep track of the attributes that have been con-
strained/relaxed through special fields of the dialogue
state. If the user keep avoiding to provide other con-
straints as suggested by the system

SUMMARY
We introduce in this paper a general architecture for dia-
logue systems based on the identification of logical
functions and their use by an explicit strategy. Both the
algorithmic structure of the functions and the strategy
are application independent (in the class of database in-
terfaces) and can be easily customized. In fact the same
architecture has been used for prototypical implementa-

tions of the ATIS application, a conference room reser-
vation, a restaurant and a movie information task. We
believe that this approach can scale up to more complex
applications and exhibit more complex behavior.

REFERENCES
[1] Kumar, V., “Algorithms for constraint-satisfaction
problems: A survey,” AI Magazine, 13/1, pp.32-44,
1992.
[2] Stallard, D., “ The BBN ATIS4 Dialogue System,”
Proc. of 1995 ARPA Spoken Language Systems, Tech-
nology Workshop, Austin Texas, Jan. 1995.
[3] Levin, E., Pieraccini, R., “ Concept-based Spontane-
ous Speech Understanding System,” Proc. EU-
ROSPEECH 95, Madrid, September 1995.
[4] Abella, A., Brown, M., Buntschuh, B., “Develop-
ment Principles for Dialogue-based Interfaces,” Proc. of
ECAI-96 Workshop on Dialogue Processing in Spoken
Language Systems, Budapest, Hungary, August 1996.
[5] M.D. Sadek et. al. “Effective Human-Computer Co-
operative Spoken Dialogue: the AGS Demonstrator,” in
Proc. of ICSLP 96, Philadelphia, PA, Oct. 96.
[6] E.Levin, R.Pieraccini, “ A Stochastic Model of Com-
puter-Human Interaction for Learning Dialogue Strate-
gies,” Proc. of Eurospeech 97, Rhodes, Greece, Sept.
1997.

1 VERBALIZER This is the AT&T Chronus Air Travel Information System, how may I help you?
2 UNDERSTANDING I want a direct flight from Denver to Boston between eight and nine thirty tomor-

row morning
3 RETRIEVAL

RELAX
VERBALIZER

There are no flights from Denver to Boston leaving between 8 and 9:30 in the morn-
ing. Instead there are flights leaving at 10:39 and 11:05. Do you have any preference?

4 UNDERSTANDING Give me a delta flight
5 DISCOURSE INT.

RETRIEVAL
VERBALIZER

Flight DL296 leaves at 10:39 am and arrives at 3:15 pm. Other questions?

6 UNDERSTANDING I need ground transportation
7 DISCOURSE INT.

VERBALIZER
Where, Denver or Boston?

8 UNDERSTANDING Boston
9 DIALOGUE INT.

RETRIEVAL
VERBALIZER

The following ground transportation is available in Boston: taxi, limousine, rental
car.

10 UNDERSTANDING Please list all the flights with Continental
11 DISCOURSE

RETRIEVAL
CONSTRAIN

There are too many flights that match your request. I need more information. At
what time you want to leave?

Table 1: Fragment of dialogue with the corresponding control states.

