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ABSTRACT

An understanding system, designed for both speech and text
input, has been implemented based on statistical representation
of task specific semantic knowledge. The core of the system is
the conceptual decoder, that extracts the words and their asso-
ciation to the conceptual structure of the task directly from the
acoustic signal. The conceptual information, that is also used to
disambiguate the English sentences, is encoded following a sta-
tistical paradigm. A template generator and an SQL translator
process the sentence and produce SQL code for querying a re-
lational database. Results of the system on the official DARPA
test are given.

1. INTRODUCTION

The goal of a speech understanding system is to trans-
late a sequence of acoustic measurements of a speech signal
into some form that represents the meaning conveyed by the
sentence. One of the knowledge representation paradigms,
known as semantic networks [2], establishes relations be-
tween conceptual entities through a graph structure. These
concept relations, or linguistic cases, can be used to label
the phrases of a sentence and obtain an intermediate repre-
sentation useful for its interpretation. In a limited domain
task [1] (e.g. airline reservation, database retrieval, etc.)
the number of different concepts can be assumed to be fi-
nite and directly deducible from the knowledge of the task
itself. For example, a typical query in an airline reservation
domain is the following:

SHOW ME ALL THE NONSTOP FLIGHTS
FROM DALLAS TO DENVER LEAVING ON
APRIL TWENTY SECOND.

A non conventional approach that incorporates the con-
ceptual model into the acoustic decoder has been taken.
Therefore, the speech recognizer will decode the words and
their association to the concepts directly from the acoustic
signal. The output of this module is called conceptual seg-
mentation; Table 1 shows an example of conceptual segmen-
tation: A second module (the template generator) translates
the initial segmentation into a different template conform-
ing to a more abstract formalism. Finally an SQL translator
generates SQL query for extracting the requested informa-
tion from an Oracle database. Fig. 1 shows a block diagram

QUERY: SHOW ME ALL
STOP-NUMBER: THE NONSTOP
QUERY-OBJECT: FLIGHTS
FLIGHT-ORIGIN: FROM DALLAS
FLIGHT-DESTINATION: TO DENVER
FLIGHT-DATE: LEAVING ON APRIL
TWENTY SECOND

Table 1: Conceptual Segmentation

CONCEPTUAL
SEGMENTATION

SPEECH | sp

| RECOGNIZER

COWCERTUAL

TEMPLATE
DECODING

GENERATION|

TEMPLATE
TEXT | =xmcan

PARSER SQL
T,E,NA vLJAO'[;nRDCE TRANSLATOR|

CcAs
COMPARATORI®—| popsarrER

ANSWER

SQL QUERY

ORACLE
database

Figure 1: Block diagram of the proposed understanding system

of the whole system. Once the answer for a sentence is pro-
duced, it is formatted according to rules defined within the '
DARPA ATIS project [7] and compared with a reference
answer, provided with each test sentence, by a comparator
developed by the National Institute of Standards and Tech-
nology [6]. The output of the comparator is TRUE, in case of
exact match of the hypothesised answer and the reference
answer, FALSE, in case of mismatch, and NO.ANSWER when
the system cannot answer the query.
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2. THE CONCEPTUAL DECODING

Once the finite set of labels has been decided, the task
of giving the appropriate concept label to each phrase of
a sentence is performed by a statistical technique. Let us
assume a spoken sentence is represented by a sequence of
acoustic observations:

A =a1,02...an (1)
The sentence corresponds to a sequence of words:
W=w,wy...wp ' (2)

and each word can be associated with a concept . label,
hence:

C=e1,c2...cnm (3)
The goal is to detect W and C given that A was observed.
The problem can be approached using the mazimum a pos-
teriori decoding criterion, according to which we want to
find the maximum of the conditional probability of W and
C given A,

> » ~ o~
.

W,&: p( ClA) = max P(W,C|A) (1)

This conditional probability can be written, using the Bayes
inversion formula, as:

P(W.C| A)= P(AIW,CI){SHC)P(C) ®)

The three terms on the right hand side of (5) are the acous-
tic model of words, the concept-conditionallanguage model,
and the conceptual model respectively. The acoustic model
of a word can be reasonably assumed to be independent of
the concept it expresses (i.e. the same word expressing dif-
ferent concepts has the same acoustic representation, hence
P(A | W,C)=P(A | W)), and can be implemented with
the standard methods (e.g. HMMs of phonetic sub-word
units [8]). Making some reasonable simplifying assump-
tions, we chose to implement the concept-conditional and
the conceptual models by a HMM whose states represent
concept relations and whose observation probabilities con-
stitute state-local language models in the form of bigrams
of words (3, 4].

The conceptual stochastic segmentation

This paradigm, called CHRONUS (Conceptual Hidden
Representation of Natural Unconstrained Speech), used a
model of 47 states and a set of 547 training sentences that
were initially hand-segmented into concepts. The tested
system (the conceptual decoder), accepts input text sen-
tences belonging to the domain, and produces a segmen-
tation of them into conceptual constituents, like the one
shown in Table 1. The parameters of the models were then
estimated with a few iterations of the Viterbi training al-
gorithm. The test was performed on a different set of sen-
tences, comparing the segmentation obtained by the con-
ceptual decoder with manual segmentation. The results on
the official DARPA June 1990 and February 1991 DARPA

test sets gave high segmentation accuracy (95.0% and 94.1%
concepts were correctly segmented and labeled in the two
test sets respectively [3]). Although the result of this test
was encouraging, it did not give us an accurate estimation
of the performance of the full understanding system. The
generation of the correct answers from the conceptual seg-
mentation of a sentence requires further processing, and
performance of subsequent stages can affect the accuracy
of the system.

The Lexicon

To relieve the problem of parameter estimation it is con-
venient to pay attention to the representation of lexicon.
In particular, it is useful to create word classes, hence hav-
ing word class bigrams instead of word bigrams in the con-
ceptual representation. The word classes should be broad
enough to allow a more robust estimation of the concep-
tual model parameters, but still semantically meaningful to
allow the decoding of the concepts. In many cases word
classes will help concept gencralization. For instance in
phrases like GOING FROM BOSTON, GOING FROM AT-
LANTA, etc., it is better to have a model representing the
structure GOING TO <cityname> . Thus, we assumed
the following in the design of the lexicon:

¢ Words with the same base (i.c. morphological variants
of the same word) are grouped together. According
to this principle, words like GO, GOES, GOING are
represented by the same super-word GO(ES)(ING).

¢ Articles (4 and THE), unevenly used in spontaneous
language, are in general associated with the follow-
ing word to form a single item (e.g. THE FLIGHT
—[THE|FLIGHT). Then, for instance, the bigram OF
FLIGHT will have the same probability as the bi-
grams OF [THEJFLIGHT and OF [AJFLIGHT.

¢ Some common compound phrases are converted into
hyphenated compound expressions, like for instance

ONE WAY, ONE-WAY, etc.

Acronyms and numbers are represented by regular
grammars, and the grammars are considered as classes

of words (e.g. TWA, USAIR, etc.).

¢ Obvious semantically meaningful classes of words are
grouped together (e.g. city names, aircraft names,
etc.). The word classes are usually represented by fi-
nite state automatons, since they can include also se-
quences of words (e.g. SAN FRANCISCO, DALLAS
FORT WORTH, etc.).

¢ For a given concept there are words that, still carrying
different or slightly different meanings, can be grouped
together according to their use in the phrases. For
instance, for the concept ORIGIN, the words

DEPART(S) LEAVE(S) ARRIVE(S)

can be considered as synonyms, and can be inter.
changed in sentences such as:
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THE FLIGHT THAT DEPART(S) FROM DALLAS
THE FLIGHT THAT LEAVE(S) FROM DALLAS
THE FLIGHT THAT ARRIVE(S) FROM DALLAS

Although the word ARRIVE(S)is not synonym of DE-
PART(S)and LEAVE(S),in the presence of the prepo-
sition FROM it conveys a similar information in this
context. A number of groups of synonyms were manu-
ally detected for each concept. The occurence frequen-
cies inside a group were equally shared among the con-
stituting words, giving the same bigram probability for
synonymous words.

For a correct interpretation of the query, the conceptual de-
coding must take into account all the possible lexical inter-
pretations. Hence, given an input text sentence, a lattice is
generated which includes all the possible interpretations [4].

Integration with a speech recognizer

The design of a speech recognizer that maximizes equa-
tion in (5) poses several implementation issues, the most
important of which is the increased search space. In fact
each word of the vocabulary must be represented by a model
in each concept state, increasing the search space of a factor
equal to the number of concepts. Since the vocabulary is
of the order of 1000 words in this application and there are
about 50 concepts, the speech recognition system has an ac-
tive vocabulary of 50000 words. In a first implementation
we limited the vocabulary of each concept only to the words
that were conditionally associated to that concept. in the
training set. With a training set of 547 sentences, the overall
active vocabulary consisted of 2372 words, while the lexicon
was composed of only 506 different words. Additionally, for
making the system more simple, we also approximated the
finite state grammars inside each concept (e.g. numbers,
acronyms, and compound words) with word bigrams. Of
course these approximations make the performance of the
overall system depend heavily on the size of the training set.
We tried also to use a decoupled approach [5]. In this case
the speech is decoded using concept independent bigrams
that were estimated on a corpus of 10,000 sentences. The
resulting active vocabulary was, in this case, composed of
1153 words. We compared the two approaches (i.e. inte-
grated and decoupled) on the basis of the word accuracy at
the speech recognition level.

The experiment was carried out using a set of 47 con-
text independent phonetic units (each one represented by a
3-state, mixture-density HMM) trained on a set of 3460 sen-
tences. Table 2 gives the word accuracy, sentence accuracy,
deletion and insertion percentages of the two recognizers on
the June 1991 DARPA test, consisting of 93 sentences. In
principle, the test set perplexity of the CHRONUS model
(i.e. context dependent bigrams) should be lower if the
model parameters are estimated on the same amount of
data as the bigram model. Since the CHRONUS model was
estimated on a 20 times smaller set than the conceptual-
independent bigram model, the resulting test set perplex-
ity is larger and the corresponding recognition results are

Del | Ins | W. Acc. | S. Acc
integrated | 7.3 | 5.3 72.3 15.2
decoupled | 2.6 | 3.1 82.1 26.1

Table 2: Speech recognition performance for the integrated and
decoupled systems

worse. Hence, increasing the size of the training data for
the chronus model should improve the performance of the
integrated system. The question is that we still do not know
which size of the overall active vocabulary in the chronus
model is, that will allow such an improvement in the per-
formance. If it is too big, the choice has to go in favor of a
decoupled approach, but in this case we must adopt a N-best
interface [9, 10, 11] or a word lattice approach [12]. Increas-
ing the sise of the training set requires more annotated data.
Hand-labeling training sentences is an expensive and slow
process. The comparator can be used for speeding up this
procedure. If reference answers are provided, the training
sentences can be used as a text input to the understanding
system. The sentences whose hypothesized answer matches
the reference answer are collected; their conceptual segmen-
tation, obtained through an initial model, is used for further
training of the system. The sentences that provide a wrong
answer are then manually segmented. We hope that this
procedure will allow to increasingly reduce the time needed
for handlabeling new iraining sentences.

3. THE TEMPLATE GENERATOR

The function of the template generator is to translate the
conceptual representation of the sentence into a template
representation. A template is a table that includes a num-
ber of pairs (TOKEN, value), where TOKEN belongs
to a finite dictionary of token names and value belongs
to a finite (or infinite, e.g. for numeric values) dictionary
of possible values that the specific token can assume. The
concept name in the conceptual segmentation translates di-
rectly to the token name according to a translation table
(e.8. QUESTION—QUERY), or according to an infer-
ence mechanism that induces information from the English
noun phrase associated to the concept. In the example such
as:

FLIGHT-ORIGIN : FLY FROM DENVER

the FLIGHT-ORIGIN concept is translated to the
ORIGIN-CITY token. I, instead of DENVER, it were
SAN FRANCISCO INTERNATIONAL, the returned token
would be ORIGIN-AIRPORT.

The determination of the token value is generally more
complicated and requires a set of concept-specific rules.

Table 3 shows an example of template generation corre-
sponding to the conceptual segmentation of Table 1: The
tokens have been classified according to the values they can
assume. In categories such as FARE or QUERY, & spe-
cific operator needs to be returned. In Table 3 example, the
token QUERY is given the value LIST which is the action
required by the sentence. A pattern-matching mechanism
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QUERY: LIST

OBJECT: flight
STOPS: 0
ORIGIN-AIRPORT: DFV¥
DEST-AIRPORT: DEN
DAY-NAME: SUNDAY

Table 3: Example of Template

retrieves the proper object, which is a database attribute.
Since the object of the input sentence is flights, the informa-
tion that has to be given to the user is the £1ight identifica-
tion. In categories such as MEAL or STOP, a logical value
will be returned. The word NONSTOP is translated into
the value 0 for the token STOPS. In categories such as
ORIGIN-AIRPORT or DEST-AIRPORT, the value,
to be returned is the database value which is the airport
code. The codes DFW and DEN correspond to the words DAL-
LAS and DENVER. The categories that deal with DATE
or TIME require the use of a grammar to parse the relevant
information. The phrase LEAVING ON APRIL TWENTY
SECOND is translated into the corresponding day of the
week (SUNDAY) needed for retrieving the appropriate flights.

The template generator could be, at least in principle,
included in the stochastic framework expressed by equation
(4). We decided to keep it as a separate module, because
the small number of training samples we have available at
the moment will make the estimation of a more complicated
model not reliable enough.

4. THE SQL TRANSLATOR

The last part of the interpretation process, namely ac-
cess to the required information, is implemented through a
translator that dynamically generates the SQL query in or-
der to retrieve the data. Once the template is produced by
the generator, it is preprocessed and then each template is
treated according to the OBJECT, e.g. flight, fare, meal,
etc. Each token inside the template is interpreted in rela-
tion to its table; for example DFW, the value of ORIGIN-
AIRPORT, or DEN, the value of DEST-AIRPORT, will
combine to create the origin and the destination of the flight
table. When the token is not directly related to the table,
2 link function is invoked in order to perform the join be-
tween the template object and another table object. This is
the case, for example, for queries that deal with flight and
fare information.

5. RESULTS AND CONCLUSION

As shown in this paper,the integration of a conceptual
model in an acoustic decoder of a speech recogniser re-
duces the search of the recognition process. The system
was tested on text understanding and the results are en-
couraging. Out of 195 test sentences and according to the
official DARPA answers for the ATIS task, the improved
system correctly answers 141 context-independent queries,
which is over 72% success rate. With speech input in the
decoupled approach, the results on the same test set gave
more than 50% success rate. More complex sentences (e.g.

queries with multiple flight-identifications, origins, and des-
tinations) require the complexity of the conceptual model
to be increased. Some modifications are also necessary for
the system to handle context-dependent queries. The sys-
tem should improve with the addition of training data and
the elaboration of a more sophisticated model.
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