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ABSTRACT 

This paper reports on the comparison between various acoustic 
feature sets and classification algorithms for classifying 
spoken utterances based on the emotional state of the speaker. 
The data set used for the analysis comes from a corpus of 
human-machine dialogs obtained from a commercial 
application. Emotion recognition is posed as a pattern 
recognition problem. We used three different techniques - 
linear discriminant classifier (LDC), k-nearest neighborhood 
(k-NN) classifier, and support vector machine classifier (SVC) 
- for classifying utterances into 2 emotion classes: negative 
and non-negative. In this study, two feature sets were used; the 
base feature set obtained from the utterance-level statistics of 
the pitch and energy of the speech, and the feature set analyzed 
by PCA. PCA showed that it can show the performance 
comparable to base feature sets. Overall, LDC achieved the 
best performance with error rates 27.54% on female data and 
25.46% on males with the base feature set. SVC, however, 
showed better performance in the problem of data sparsity.  

1. INTRODUCTION 

Emotion recognition in human speech has obtained increasing 
attention in recent years as the need for machines to 
detect/recognize human emotions in human-machine 
interaction environments has grown [1]. Our motivation for the 
recognition of negative emotions in speech comes from the 
increased role spoken dialog systems are playing in human-
machine interaction, especially for deployment of services 
associated with call centers such as customer care. Other 
applications include a variety of automatic training and 
education scenarios. Automatic emotion recognizer is a system 
for assigning category labels that identify emotional states.  
While cognitive theory in psychology argues against such 
categorical labeling [3], it provides a pragmatic choice, 
especially from an ‘engineering standpoint’. Focusing on the 
archetypal emotions --happiness, sadness, fear, anger, surprise, 
and disgust -- is typically justified as a way into arriving at 
finer distinctions. For example, Scherer explored the existence 
of a universal psychobiological mechanism of emotion in 
speech across languages and cultures by studying the 
recognition of 5 emotions in nine languages, and obtained 66% 
overall accuracy [4].  

We favor the notion of application-dependent emotions, and 
thus focus on a reduced space of emotions in the context of 
developing algorithms for conversational interfaces. In 

particular, we focus on recognizing negative and non-negative 
emotions from the acoustic speech signal. The detection of 
negative emotions can be used as a strategy to improve the 
quality of the service in call center applications. While 
semantic and discourse information also contribute toward 
emotion recognition, the focus of this paper is on classification 
based on acoustic information only. In a previous study [2], we 
presented preliminary results on classification of negative and 
non-negative emotions. This paper expands upon those ideas 
including new results using a support vector machine classifier 
(SVC). Our study showed that SVC would overcome the 
problem of data sparsity, which is a critical challenge in real-
world applications.  

Various pattern recognition approaches have been explored 
for automatic emotion recognition [5][6]. Dellaert et al., for 
instance, used maximum likelihood Bayes classification, 
Kernel regression, and k-nearest neighbor methods [7], 
whereas Roy and Pentland used Fisher linear discrimination 
method [8]. In this paper we used linear discrimination 
classifier (LDC), k-nearest neighborhood (k-NN) classifiers 
and support vector machine classifier (SVC) as the 
classification methods. Petrushin developed a real-time 
emotion recognizer using neural networks for call center 
applications, and achieved ~77% classification accuracy in two 
emotion states, ‘agitation’ and ‘calm’ for 8 features chosen by 
a feature selection [5].   

In this study, we used a corpus of sentences from a human-
machine spoken dialog application deployed by SpeechWorks 
used by real customers [9]. So far, most of the reported studies 
have used speech recorded from actors that were asked to 
express pre-defined emotions. A notable exception is the study 
by Batliner et al [6]. They adopted a ‘Wizard-of-Oz’ scenario 
to collect data, which assumed that naive subjects were asked 
to communicate with a real computer, in two emotion 
categories such as ‘emotional’ and ‘neutral’.   

As to the acoustic features for emotion recognition, 
prosodic information is most common. McGilloway et al. 
studied 32 different features for the classification of 5 emotion 
states [10]. The features are concerned with F0 (pitch), energy, 
duration and tune (segments of the pitch contour bounded at 
either end by a pause of 180 ms or more). In our work, we 
used ten utterance-level statistics derived from F0 and energy 
as the acoustic features for emotion recognition.  

By far, most previous research on front-end signal 
processing for emotion recognition has focused on a variety of 
feature sets obtained directly from the speech [5][7]. However, 
some of the features may be highly correlated and hence may 
not be optimal. Since we pose emotion recognition in human 



speech as a pattern recognition problem, we can apply 
component analyses such as principal component analysis 
(PCA) to discover, and reduce, the underlying dimensions of 
the feature space.  Another advantage of using PCA for 
dimensionality reduction is that the large dimensionality of the 
feature space can hurt the performance of the pattern 
classification if the size of the training data is small. Thus, in 
this work, we adopted PCA for feature reduction and used the 
resulting features as new feature set in the experiments.  

2. SPEECH DATA CORPUS 

The speech data (8kHz, mu-law) used in the experiments was 
obtained from real users engaged in a spoken dialog with a 
machine agent over the telephone for a call center application 
deployed by SpeechWorks. To provide reference data for 
automatic classification experiments, the data were 
independently tagged by 2 human listeners. Only those data 
that had complete agreement between the taggers (about 65% 
of the set) were chosen for the experiments reported in this 
paper. After the database preparation, we obtained 706 
utterances for female speakers with 532 non-negative and 133 
negative utterances and 514 for male (392 non-negative and 
122 negative emotion-tagged utterances). In doing experiments, 
we assumed that the prior probabilities of each class are equal 
to 0.5 since it is our hope of classifying the emotions in speech 
with just the given data.  

Data sparsity is a critical challenge and a reality in the study 
of emotion recognition. In collecting emotional speech, it was 
found that explicit display of negative emotions is relatively 
infrequent in realistic human-machine interactions. But even in 
such cases, detecting negative emotions is important, e.g., 
from the viewpoint of customer service in automated caller 
systems. Hence, algorithm development for classification 
should attempt to cope with this issue of data sparsity.  

3. FEATURE EXTRACTION 

In our experiments, only acoustic features such as pitch and 
energy related features were calculated from the speech signal. 
Additional features would be useful for the emotion 
recognition: such as linguistic information, e.g., the use of 
swear words [11] and discourse information, e.g., repetition of 
the same sub-dialog. A scheme to combine those ‘content-
related’ features with acoustic features was proposed in [6], in 
which they used   details about topic repetition as their 
‘language’ information. Here, we focus only on acoustic 
features.  

3.1. Base Feature set and Feature set by PCA 

We used two feature sets for the experiments; one is the base 
feature set and the other is the feature set by PCA. Base 
acoustic feature set for emotion recognition comprised 
utterance-level statistics obtained from the pitch (F0) and 
energy information of the speech signal. These included the 
mean, median, standard deviation, maximum, and minimum 
for pitch, and mean, median, standard deviation, maximum, 
and range (maximum – minimum) for energy. For pitch 
calculations, only voiced regions were taken into account. To 
compute the energy of the speech signals, we used a 30 ms 
Hamming window with 10 ms overlap. Further all the samples 

were normalized, i.e., the origin was shifted to the means of 
the features and the variances of all features were scaled to 1. 

Another feature set we used was those after preprocessed 
by PCA. The dimensionality of the feature set with PCA can 
be reduced from that of base feature set [12]. 

4. CLASSIFICATION 

In our experiments, three classification methods were applied 
to the data; linear discriminant classifier with Gaussian 
distribution (LDC), k-nearest neighborhood (k-NN) classifier, 
and support vector machine classifier (SVC). First two 
methods were adopted in a previous study [2]. LDC is a 
parametric method with Gaussian probability distributions as 
its class-conditional distribution of each class. After 
estimating the parameters such as means and variances, LDC 
classifies the class based on the maximum posterior 
probability using Bayes rule. The k-NN classifier first 
approximates the local posterior probability of each class by 
averaging over the k nearest neighbors. Classifying the class 
by k-NN is performed by voting the majority vote over those 
neighbors. In the experiments, it was shown that k-NN 
classifiers provided more reliable performance due to the fact 
that class-conditional probability distribution is not Gaussian. 
In SVC, the input vectors, x, are mapped onto a high 
dimensional feature space F through some nonlinear mapping. 
The detailed description on SVC is in the following section.  

4.1 Classification by Support Vector Machines 

By preprocessing the data to represent patterns in a higher 
dimension than input space, we can separate them from two 
classes by a hyperplane in new feature space. Let Φ be the 
nonlinear mapping from original feature space to new high 
dimension feature space [12-14].  

FR N →Φ :       (1) 

where N is the dimension of input feature space and F is high 
dimensional space. After transforming each input feature to 

)( kk xy Φ= , k = 1, … , n (number of training patterns), we 

can find a hyperplane discriminating the new feature space, 
such as 

bg +⋅= ywy)(       (2) 

where b is margin and ⋅  denote inner product of two vectors. 
For two class problem, let 1±=kz  denoting which class the 

kth pattern belongs. Thus a separating hyperplace satisfies 

01)()( ≥−+⋅= bzgz kk ywy , k∀   (3) 

Now consider the points for which the equality in Eq. (3) 
holds. These points lie on the hyperplane Φ, and are called 
support vectors. Support vectors are the training data that 
define optimal separating hyperplane and the most difficult 
patterns to be classified. Accordingly, these points are most 
informative patterns for the classification task.  

To construct the optimal separating hyperplane in the 
feature space F, one only needs to calculate the inner product 
between support vectors and the vectors of the feature space 
by “kernel function”, ).()(),( jijiK xxxx Φ⋅Φ= The common 

kernel functions are polynomial functions with various 



degrees and radial basis functions (RBFs). The decision 
function that is nonlinear in the input space is: 
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where iα ’s are Lagrange multiplier coefficients. To find iα , 

it is sufficient to find the maximum of the objective functional 

),(
2
1

)(
,1

jiji

n

ji
ji

n

i
k KyyL xxα ∑∑ −=

=
ααα       (5) 

The advantage of SVC approach is that the complexity of 
the resulting classifier is characterized by the number of 
support vectors rather than the dimensionality of the 
transformed feature space. As a result, SVC tends to be less 
prone to overfitting problem than other classification methods 
[13].  

5. EXPERIMENTAL RESULTS 

We used three pattern recognition techniques to classify the 
emotion states conveyed by the speech utterances: (1) linear 
discriminant classifier (LDC) that assumes each class has 
Gaussian probability distribution. (2) k-nearest neighborhood 
(k-NN) classifier and (3) support vector machine classifier 
(SVC). The first two classifiers were explored in detail in [2] 
and are used in this study, comparing with the performance of 
SVC. The training data set was selected 10 times in a random 
manner from the whole data set. Each training data set had 
260 samples (130 data from each emotion class) for female 
and 240 (120 samples from each emotion class) for male. All 
the error rates in the experiments were calculated by 10-fold 
cross validation. That is to randomly divide the training data 
set into 10 disjoint sets of equal size, and classifiers are 
trained 10 times, each time with a different set held out as a 
validation set [12]. The estimated error rate is the mean of 
these 10 errors. The final error rates were the mean of 10 
training dataset randomly chosen from the data pool.  

5.1. Comparison between Classifiers    

Classifier Method 
 

Averaged Error, 
 % 

Standard Dev.,  
% 

LDC 27.54 1.86 

k-NN (k=3) 28.35 2.33 

SVC 27.69 2.11 

(a) 
 

Classifier Method 
Averaged Error, 

 % 
Standard Dev.,  

% 

LDC 26.85 1.3 

k-NN (k=3) 29.5 2.18 

SVC 25.58 1.72 

(b) 

Table 1: Comparison of 3 classifiers in terms of averaged 
10-fold cross-validated classification error in female data. 
(a) base feature, and (b) feature by PCA (dimension = 6). 
For SVC, polynomial kernels with degree of 1 were used. 

Classifier Method 
 

Averaged Error, 
 % 

Standard Dev.,  
% 

LDC 25.46 2.24 

k-NN (k=7) 26.42 2.14 

SVC 25.75 1.66 

(a) 
 

Classifier Method 
Averaged Error, 

 % 
Standard Dev.,  

% 

LDC 23.62 1.21 

k-NN (k=7) 26.33 2.1 

SVC 25.04 1.32 

(b) 

Table 2: Comparison of 3 classifiers in terms of averaged 
10-fold cross-validated classification error in male data. (a) 
base feature, and (b) feature by PCA (dimensioin = 6). For 
SVC, polynomial kernels with degree of 1 were used. 

Table 1 and 2 show the performance comparison between 
LDC, k-NN, and SVC classifiers for female and male data. 
When determining the parameters (k for k-NN and kernel for 
SVC) of k-NN classifiers and SVC, we used 10-fold cross-
validation, and set the parameters with the lowest 
misclassification error rate.  

In the experiments, LDC performed better than k-NN 
classifiers and SVC, but within the range of standard deviation. 
We can conclude that 3 classifiers perform the same. Note that 
the feature sets by PCA, which reduced the feature dimensions, 
showed the comparable performance with the base feature sets. 
By reducing the feature dimension, we usually lose the 
information for classification, but PCA preserve enough 
information to perform comparably. 

5.2. Learning Curves Along Training Sample Sizes 

It is known that the generalization in SVC is high because the 
optimal hyperplane can be constructed from a small number of 
support vectors; therefore, it is less prone to the size of the 
training set than LDC even in higher dimensions [14]. In 
Figure 1, the error evaluation curve for female data is shown 
for base feature sets. The error is calculated by training each 
classifier in randomly chosen patterns out of the whole data 
each learning size in each class, repeating 10 times computing 
the classification error on the remaining unused patterns, and 
averaging the results of error rate. Both SVC and k-NN 
classifiers performs better than LDC in the sense that even in 
small number of training set, the generalization ability is better 
than LDC. 

6. CONCLUSIONS 

In this paper, we explored automatic recognition of negative 
emotions in speech signals using data obtained from a real-
world application with pattern recognition techniques, such 
SVC, LDC and k-NN, in conjunction with feature reduction 
method of PCA. We also notice that SVC outperforms LDC 
in the light of generalization. Due to the data sparsity we  
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Figure 1: Test error evaluation curve for 3 classifiers (female 
data). For each learning size, training data were chosen at 
random out of the whole dataset for each classifier and tested 
against an unused data in the dataset. This process was 
repeated 10 times and the errors were averaged. For SVC, 
polynomial of order 1 (linear) kernel was used. 

encounter in the real world applications, this is a very 
promising result and needs further research. Note also that 
PCA in these data sets showed comparable performance for 
all the classifiers even in the reduced feature dimensions. 
There are several issues to be further explored in the future. 

First of all, we should consider more refined tagging 
methods for emotion states of the data used because it comes 
from a real-world application i.e., no pre-assigned emotion 
categories were available. In this respect, more human 
listening tests should be performed to ensure the emotion 
states of utterances. 

Secondly, research on the emotion recognition has focused 
just on the acoustic features. However, sometimes it is more 
appropriate to perform PCA or other component analyses on 
the original signal data to remove redundancies. The 
comparable performances obtained by PCA in all the 
classifiers suggest the promise of such an approach for the 
emotion recognition problem in real-world data. In this 
respect, we should further explore other techniques such as 
factor analysis for emotion recognition.  

The last issue is about classification methods. Since 
emotion states/categories do not have clear-cut boundaries, we 
need to explore and develop the classification methods to deal 
with that problem. Such studies should also have the ability of 
integrating other information such as linguistic and dialog 
information to improve emotion recognition.   
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