

ICSLP 2002

A Portable, Server-Side Dialog Framework for VoiceXML

Bob Carpenter Sasha Caskey Krishna Dayanidhi Caroline Drouin Roberto Pieraccini

SpeechWorks International, Inc.
http://www.speechworks.com/

{ bob.carpenter, sasha.caskey, krishna.dayanidhi, caroline.drouin, roberto }@speechworks.com

ABSTRACT
We describe a spoken dialog application framework that com-
bines the power and flexibility of server-side Java Servlets and
Java Server Pages (JSPs) with the deployment portability, reli-
ability and scalability of standard web (HTTP) servers and
VoiceXML clients. Applications are developed by extending a
framework of Java classes in order to define dialogs through
lower level actions such as speech recognition, audio prompt-
ing, speech synthesis, and backend data access. The framework
delegates session data management to servlets, embedding
frame-based representations for the application’s global and
session data. Dialog flow is controlled through general con-
structions such as loops, conditionals, scoped sub-dialogs,
along with scoped command, error, and exception handling.
Prompting and grammars are configured through simple JSP
templates that generate the VoiceXML instructions for the
server to return to the client. The framework is designed to be
extensible, as demonstrated by the implementation of custom-
izable backup and repeat commands integrated with session
data, command handling and grammar scoping.

VOICEXML CLIENTS & SERVERS
Like an HTML graphical web browser, a VoiceXML cli-
ent proceeds by requesting data from a VoiceXML
server using the HTTP protocol (see Figure 1). The
server returns content in the form of a VoiceXML
document [1]. The client interprets the document, which
may include local computation with ECMAScript [2],
synthesizing speech, playing pre-recorded prompts, and
performing speech recognition [3]. As part of its
VoiceXML processing, the client may make further re-
quests to the same server or to other servers. The client
may provide information about speech recognition re-
sults or local variables to the server along with a request
for a new page. The server updates its state based on the
client request and sends an HTTP response containing
the appropriate VoiceXML document to the browser.
 VoiceXML specifies its own dialog control, which
controls prompting and synthesis, recognition, telephony
event handling, and local ECMAScript evaluation. Con-
trol flow may also be transferred to a document specified
by a URL either through a direct transfer or a subdialog
invocation. Despite this rich set of control structures, it
is impossible to build a sophisticated, data-driven appli-
cation with all of its logic expressed in VoiceXML on
the client side, because there is neither a way to store
data across sessions, nor a way to access backend ser-
vices and resources such as databases. Without non-
standard extensions to a VoiceXML client, as in [4], it is
not possible to provide personalized dialog flow, cus-

tomized language models based on registered prefer-
ences, inventory availability information, or to record
any data that persists after the call terminates. To facili-
tate data-driven applications, we choose to control the
dialog on the server side, employing VoiceXML for its
standardized, portable speech and telephony interface.

Application (.war)

HTTP Server
Apache, IIS, iPlanet, Zeus,

...

VoiceXML Browser
SpeechGenie, Tellme,

DirectTalk, SpeechWorks,
GeneralMagic

Telephony Server

Dialogic, Conversant, Edify,
VoiceGenie, Tellme, Telera,

BeVocal, Periphonics, ...

ASR Server
SpeechWorks, Sphinx, HTK,

Nuance, IBM ViaVoice

TTS Server
Speechify, Eloquent,

Festival, Rhetorical, ...

H
TT

P

compile Backend
Services

audioEnd Users

Servlet/JSP Container

Tomcat, JRun, Dynamo, ...

OSAF Development
Environment

jdk, j2eee, emacs, bash,
quantify, netbeans, cafe, ...

VoiceXML Client

VoiceXML Server

Desktop Audio Server

MyGenie, IBM

telephone

mic & speaker

Developers

Audio Servers

Figure 1: VoiceXML Application Architecture

SERVER-SIDE DIALOG CONTROL & SERV-
LETS
A fundamental challenge we face in implementing
server-side dialogs for VoiceXML is that HTTP is state-
less, in that each request is independent. In order to
maintain session information, the client and server may
exchange cookies as part of their HTTP requests and re-
sponses. Alternatively, session identifiers may be em-
bedded directly in the URL of the request. Rather than
supply a custom solution to this thorny problem, as in
[4], we chose to take advantage of the portability pro-
vided by Java Servlets and Java Server Pages [5].
 Servlets provide a powerful abstraction over HTTP
not only by automatically handling the numerous details
of the HTTP protocol itself, but also by maintaining ses-

ICSLP 2002

sion data. A single instance of each servlet handles all of
the requests for the URL to which it is assigned (so it
must be thread safe and cannot store call-specific session
information directly in member variables). Each request
is handled by a method call to the servlet instance, an ar-
gument to which provides any data supplied by the client
in the request and any session data on the server associ-
ated with the request. At the beginning of each session a
fresh session object is created by the servlet container
and initialized by the framework. Although the servlet
response methods are quite general, the framework han-
dles most of the details so we need only supply the text
of the VoiceXML document for the client.
 Servlets are managed by a servlet container, of which
several are available, including the Tomcat, JRun, and
Dynamo. The application provides the servlet container
with compiled classes for each servlet, typically in a web
archive (WAR) format. The servlet container manages
the life cycle of servlets, constructing instances when
they are needed and freeing them when they are not.
JSPs are also included in the archive, but are trans-
formed into servlets and then compiled on the fly by the
servlet container. This archive format is portable across
servlet containers, and the servlet containers themselves
are typically portable across servers.

APPLICATION COMPONENTS
A significant advantage of VoiceXML is that an applica-
tion can be hosted on a standard web server, such as
Apache or IIS, with the telephony, speech recognition
and speech synthesis being handled on the client side,
which may even be maintained by a third party. In gen-
eral, the relation between servers and clients is many to
many, but applications may be deployed with all of the
services shown in Figure 1 on a single machine. On the
client side, VoiceXML browsers and audio platforms are
available in many different configurations. Several
browsers are available bundled with different speech
recognizers, speech synthesizers, and telephony deploy-
ment options, including offerings by Tellme, Voice-
Genie, BeVocal, and HeyAnita. MyGenie and Di-
rectTalk are available on the desktop, and SpeechWorks
provides an open source browser, VXI, for which Car-
negie Mellon University has integrated Sphinx, its open-
source recognizer, and Festival, a widely used open
source speech synthesizer. VoiceGenie and IBM also
offer platforms which bypass telephony altogether
through desktop computer audio and internet access.
This allows applications to be tested on the desktop be-
fore deployment without equipping each desktop with
telephony equipment.

ETUDE DIALOG MANAGER
For specifying call flow, we employ the ETUDE dialog
framework, which is more fully described in [6]. Rather
than extend VoiceXML, as in [7], or require specialized

servers, as in [4], we designed ETUDE in such a way that
it could be controlled through servlets. Before we de-
scribe how that is accomplished, we describe the ETUDE
framework itself. The class hierarchy of ETUDE is shown
in Figure 2 in Unified Modeling Language (UML) format
[8]. The fundamental building block of the framework is
the Action interface, which contains an execute
method that operates on the Session data. Developers
will implement the interface in classes that handle both
the interaction with the caller through speech and the in-
teraction with the backend data services. A Condition
supplies a test method over the session data returning a
boolean.

Application

init();

Dialog

Node initial();
bool final(Node);

NodeAction

execute(Session);

Transition Condition

bool test(Session);

1
*

1

1

2

*

*
1 *

* 1

*

Figure 2: Dialog Classes

 Following the standard pattern for generic data ma-
nipulation found not only in servlets themselves, but in
dialog systems such as MITRE’s Galaxy Communicator
[9], our framework provides an associative-array-like data
structure, called a Frame, for managing application ses-
sion data. Typically an Action or Condition will only
access the Frame portion of the Session. A Frame is a
map from keys, which are of type String, to values,
which implement the interface Slot. Instances of Slot
are available as wrappers for strings, numbers (integer
and floating point), booleans, other frames, and even arbi-
trary Java objects. The Slot interface handles copying
and comparison, and other generic object bookkeeping
details. A set of classes implementing Action is provided
for manipulating frame values and a similar set of classes
is provided implementing Condition for testing the con-
tents of a Frame. A simple boolean expression language
over frames is available for creating these conditions.
 To produce VoiceXML output, the framework pro-
vides a class OutputAction, that implements Action. It
is configured with the URL of a VoiceXML subdialog.
As in Galaxy [9], with an OutputAction it is possible to
specify the input parameters from the Frame and specify
the location in the Frame to return the result parameters.
The framework supplies templates to implement simple
VoiceXML subdialog calls through JSPs, which are con-
figured to pack up recognition and telephony events for

ICSLP 2002

return to the server, which can then handle them appro-
priately as regular results, exceptions or errors.
 Dialogs are created through the Dialog class, which
extends Action. A Dialog consists of a number of Node
and Transition objects, including one Node singled out
as the initial node and any number of nodes specified as
final nodes. A Node provides exactly one Action,
whereas a Transition requires one source Node, one
destination Node and a Condition on the session.
 Developers do not write execute methods for dialogs
or manipulate Nodes independently of dialogs. Instead,
they construct dialogs by specifying a set of nodes, each
with its own action, and an ordered set of transitions that
specify the flow of control between nodes. Execution of a
dialog begins with its initial node being active. At each
stage during execution, the active node’s action is exe-
cuted. After a node’s action is executed, its transitions’
conditions are evaluated in turn until one succeeds, at
which point the new active node becomes the target of the
transition. A dialog’s execution terminates after the exe-
cution of one of its terminal nodes.
 If the action to be executed for a node is itself a dialog,
the framework pushes the currently active node onto its
stack, which is stored along with the session data, and
then executes the dialog constituting the node’s action re-
cursively. When the embedded dialog terminates execu-
tion, the stack is popped and the node containing the ac-
tion becomes active so that its transitions may be evalu-
ated. In the interest of modularity, dialogs constituting ac-
tions may be defined to work on their own local frame
variables rather than on the frame of its containing dialog.
As with the calls to external subdialogs through JSPs, the
results of embedded dialogs on nodes on the server side
are returned analogously to Galaxy [9], with mappings
from local dialog’s frame to the embedding dialog’s
frame.
 An abstract Application class is provided, and the
developer extends it by providing a method that returns a
top-level dialog and by implementing an initialization
method. The initialization method allows the management
of any dialog-specific server-side resources, and a match-
ing teardown method is also provided.
 This flow of control, coupled with the isolation of out-
put actions allows the server to maintain state and session
data. The framework implements a top-level controller
servlet that is configured with an Application, and
controls the dialog by manipulating the Dialog objects di-
rectly. This servlet will be provided to the servlet con-
tainer as the handler for requests to the dialog specified
by the Application.

ERRORS AND EXCEPTIONS
Before evaluating ordinary transitions leaving nodes,
ETUDE first determines if an exception has been thrown
and not handled. When an exception is thrown, either by
the underlying speech engine through a return value, or

by an action in the framework, it is given a name. Actions
are available to handle exceptions, and each node can
have a special transition to another node based on the
type of exception found. Typically, a dialog will handle
all exceptions of a given type in a single place, for which
convenience methods exist for specification, and then ei-
ther eliminate the exception and recover, simply return, or
throw the same or a different exception to a containing
dialog. This allows for a general, scoped exception-
handling mechanism, much like in Java itself.

REPEAT AND BACK-UP
In addition to the basic action/dialog architecture,
ETUDE also supports several reusable patterns of call
flow, including backup, repeat, and global command
navigation, as well as scoped exception and error han-
dling (see [6] for details). Any node in a dialog may be
marked as a backup anchor. Every time a node marked as
a backup anchor is visited, it is pushed on a stack of po-
tential return points, which involves making a copy of the
frame using the Slot interface. Any node may have
backup activated, meaning that if backup command
(whose grammar is configurable) is recognized in speech
from the user, control will return to the node indicated on
the top of the backup stack (excluding the current node).
Repeat is similar, but does not require a stack, controls for
the fact that only prompts can be repeated, and the current
node is not excluded.

VALIDATION AND VISUALIZATION
Once a dialog has been specified and compiled, it will be
automatically validated before it is used. Validation tests
that all nodes are reachable, all transitions are on valid
nodes, simple infinite loop transitions don’t exist, at most
one else-case transition exists per node, and that excep-
tions and commands are not handled twice.
 In addition to validation, which is a very weak test,
simply meant to supplement the compiler, we also pro-
vide a visualization of the node, action and transition
structure of a dialog through GraphViz, an open-source
graph rendering program [10] which produces output in a
variety of formats, including postscript.

LOGGING
The VoiceXML specification provides details of client-
side logging, but for applications run from a server, we
need to be able to log a variety of information, ranging
from framework or action errors (such as session
invalidation or missing keys), to warning messages (such
as missing exception handlers on dialogs), to detailed
event logging of particular nodes visited and transitions
evaluated during a particular call.

CONFIGURATION WIZARDS
One of the most challenging aspects of launching and
maintaining a robust speech applications is managing the

ICSLP 2002

range of speech configurations required in terms of
grammars, language models, acoustic parameters, timeout
parameters, rejection and confirmation thresholds, and so
on. Typical recognition turns can be configured with as
many as three or four dozen parameters. To manage the
complexity inherent in this process, the framework in-
cludes a wizard tailored to configuring the parametric
JSPs invoked for subdialogs, constructed by extending
Netbeans [11], an open-source Java Integrated Develop-
ment Environment (IDE).
 Another challenging configuration situation arises in
provisioning the server with the appropriate archive file
and configuring both the servlet container to control the
servlets and the server to point to the servlet container.
This includes static content such as prompts, grammars
and language models. Thus we provide a configuration
wizard (also in Netbeans) for setting up the configuration
necessary for the open source Apache web server and
Tomcat servlet container.

XML SPECIFICATION
As in [7], we provide an XML specification format suffi-
cient for generating an entire application, from configura-
tion through to the Java code. The XML format is de-
signed to eliminate redundant information, especially for
configuration, and to be able to generate code that will
run in the framework. Naming redundancy is especially
problematic in web applications, where evaluation occurs
in several environments and the location of compilation is
not necessarily the location of deployment.
 A validating DOM parser, also written in Java, carries
out the transformation, generating web and servlet con-
tainer configuration, controller servlet code, the applica-
tion code, code for all of the dialogs and all of the actions,
and creates the requisite directory structure for all of the
prompts, grammars and language models. Along with
this, it creates a build file in the open source Jakarta Ant
format [12] that in turn builds the web archive of the
complete application.

THE VOICE WEB
By admitting external subdialog calls, our framework al-
lows for the possibility of distributed applications, much
as on the web. For instance, flight information, mapping
and directions or credit card subdialogs may be hosted
remotely and re-used across any number of applications.

SUMMARY
We described a framework for developing VoiceXML
applications on the server side that achieves portability
through implementation as standard Java servlets and
flexibility through its use of standard Java coding for un-
derlying actions, which even allow for scoped control.
We show how the components fit together and how we
were able to build this using standard, off-the-shelf, open-
source components.

REFERENCES

[1] W3C. 2001. Voice eXtensible Markup Language
(VoiceXML) 2.0 Specification. Working Draft.

http://www.w3.org/TR/2001/WD-voicexml20-20011023

[2] ECMA. 1999. Standard ECMA-262. ECMAScript Lan-
guage Specification. 3rd Edition.
http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM

[3] W3C. 2001. Speech Recognition Grammar Specification
for the W3C Speech Interface Framework. Working Draft.
http://www.w3.org/TR/2001/WD-speech-grammar-20010820

[4] Tsai, A., A.N. Pargellis, C.-H. Lee, and J. P. Olive. 2001.
Dialog session management using VoiceXML. Eurospeech
2001. Aalborg.

[5] Sun Microsystems. 2001. JavaTM Servlet 2.3 Specification,
Java Server Pages 1.3 Specification.
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/

[6] Pieraccini, R., S. Caskey, K. Dayanidhi, B. Carpenter, M.
Phillips. 2001. ETUDE: A recursive dialog manager with em-
bedded user interface patterns. Proceedings of ASRU 2001.

[7] Nyberg, E., T. Mitamura, P. Placeway and M. Duggan.
2002. DialogXML: Extending VoiceXML for dynamic dialog
management. Human Language Technologies 2002. DARPA.
San Diego.

[8] Rumbaugh, J., I. Jacobson, G. Booch. 1998. The Unified
Modeling Language Reference Manual/. Addison-Wesley.

[9] MITRE Corporation. 2002. Galaxy Communicator Docu-
mentation Version 3.3.
http://communicator.sourceforge.net/sites/MITRE/distributions
/GalaxyCommunicator/docs/manual/index.html

[10] GraphViz. Open Source graph visualization.
http://www.research.att.com/sw/tools/graphviz/

[11] Netbeans. An Open-Source Java IDE.
http://www.netbeans.org/

[12] Ant. An Open Source XML-Based Make.
http://jakarta.apache.org/ant

