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ABSTRACT

In this paper we propose a mechanism for learning the param-
eters of a model that constitutes the basis of the natural language
component of a speech understanding system. The model defines
a representation of the meaning of a sentence as a sequence of
elemental semantic units. The sentence production mechanism,
in this paradigm, is equivalent to a noisy channel whose input is
the sequence of meaning units and whose output is a sequence of
acoustic observations. The decoding (i.e., the understanding) is
then formalized as the problem of finding the meaning given the
acoustic representation. The automatic estimation of the model
parameters is possible if a statistically significant set of sentence
examples is available, and if each sentence is provided with the
correct meaning. Unfortunately a database of sentences anno-
tated with their meaning is not available at the moment. Instead
we have a database, within the DARPA ATIS project [4], in which
each sentence is given a correct answer. In this paper we discuss
the problem of automating the training procedure and we give
some experimental results.

1 TIntroduction

In this paper we refer to a natural language (speech or text) under-
standing system as a system that, given as input a suitable repre-
sentation of a sentence (e.g., a sequence of acoustic measurements
for spoken utterances or simply a sequence of word identifiers for
written sentences), will produce as output a representation of the
sentence meaning, suitable for performing the action required by
the subject that uttered the sentences. The output of the language
understanding system, i.e., the representation of meaning, is then
converted into the required action, which could be the generation
of the proper answer or the execution of a command.

Looking back at the history of speech recognition, we find
that a rule-based paradigm was proposed as an alternative to the
template-matching and stochastic approaches. In the rule-based
approach to speech recognition, a human expert encodes the rules
that allow the identification of basic units of speech (phonemes,
allophones, phones, syllables, words, etc.) based on the observa-
tion of complex features extracted from the speech signal. These
rules are then integrated with lexical and syntactic rules accord-
ing to the application language. An inference engine analyzes the
features extracted from the incoming speech and tries to deter-
mine the spoken words, according to the specified rules. On the
other hand, the statistical approach (often referred to as the brute
force approach) does not generally rely on complex features nor on
a priori human knowledge. In the statistical approach to speech
recognition, a stochastic model of each basic unit is designed, and
its parameters are estimated from a number of examples of the
chosen speech units. The only human supervision required in the
training (i.e., the estimation of the model parameters) is the la-
beling of each example as a sequence of the basic recognition units
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(i.e., if the units are words and if the examples are sentences, each
utterance must be annotated with the exact sequence of spoken
words). For these reasons, during the last decade, when comput-
ers became able to deal with large amounts of data in reasonable
time, the stochastic approach to speech recognition outperformed
the rule-based approach, so much that the literature today does
not report any rule-based speech recognizer. We can conclude that
the high performance of today systems is achieved by the ability
to use large databases of examples.

We believe that a similar situation will occur in the discipline of
language understanding. Current natural language understanding
systems are generally based on rules that are generally designed
by an expert. This procedure makes maintenance, updating, and
generalization of a system to other tasks a very expensive and
difficult operation. Moreover, the set of rules that a human ex-
pert can think of for describing a language will hardly be ex-
haustive because of the variety of expressions present in that lan-
guage. The situation is even more critical when spoken language
is taken into account. Spoken language, often ungrammatical and
idiomatic, generally follows rules that are different from written
language rules. Moreover, in spoken language, there are phenom-
ena like false starts and broken sentences that do not appear in
written language. Many examples of the idiosyncrasies of spoken
natural language can be found by analyzing a recently collected
database of dialogues {10] in the airline reservation domain, within
the DARPA ATIS project {4]. An extreme example of this kind

of sentence is the following:

FROM uh sss FROM THE PHILADELPHIA AIR-
PORT wm AT ooh THE AIRLINE IS UNITED
AIRLINES AND IT IS FLIGHT NUMBER ONE
NINETY FOUR ONCE THAT ONE LANDS I NEED
GROUND TRANSPORTATION TO uh BROAD
STREET IN PHILELD PHILADELPHIA WHAT
CAN YOU ARRANGE FOR THAT?

1t is clear from this example that, although the spoken lan-
guage often does not follow the grammatical rules of English, it is
still able to convey meaning. This suggests that an understanding
system designed for spoken language should allow enough flexibil-
ity to deal with ungrammatical expressions and disfluencies, and
should incorporate a mechanism that permits learning new ex-
pressions from examples. Furthermore, since we are interested
in developing a speech understanding system, the understanding
model should define a framework that allows an easy and natural
integration with the speech recognizer.

Following the above considerations we designed a framework,
called CHRONUS ?, based on a stochastic representation of con-
ceptual entities, that has the following features:

Y“This sentence was cited by Victor Zue, MIT, during the 5th DARPA
Waorkshop on Speech and Natural Language, Harriman, NY, Dec. 1991.

2CHRONUS stands for Conceptual Hidden Representation of Natural Un-
constrained Speech. This acronym is used both for the proposed representa-
tion paradigm as well as for the whole understanding system.
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SHOW ME THE FLIGHTS TO BOSTON

(question, display) (subject,flight) (destin,BBOS)

HOW MUCH IS THE PRICE OF THE FLIGHT FROM ATLANTA

(question,display) (subject,fare) (destin, MATL)

Table 1: Example of keyword/pair representations of simple phrases within the ATIS domain.

e The model parameters can be learned from examples of sen-
tences during a training stage. The examples must be an-
notated with the exact sequence of conceptual entities.

e A bootstrapping procedure can be developed that allows us
to use data that is not originally annotated in terms of the
defined conceptual entities, with the minimum amount of
human supervision.

e The understanding system can be naturally integrated with
a speech recognizer [8].

NATURAL -SEMANTIC
—*  LANGUAGE LANGUAGE | —
N-L S-L C-L
TRANSLATOR TRANSLATOR

Figure 1: Understanding as a cascade of two language translators

2 Formalization of the Language
Understanding Problem

In this section we propose a formalization of the spoken language
understanding problem in terms of the noisy channel paradigm.
According to this paradigm we think of an utterance as a cor-
rupted and noisy form of the symbolic representation of its mean-
ing: Here we assume that the meaning of a sentence can be ex-

pressed by a sequence of basic units M = my,ma,...,my,, and
that there is a sequential correspondence between each m; and a
subsequence of the acoustic observation A = a1,a,...an,. This

hypothesis, although very restrictive, was successfully introduced
also in [7).. According to this model of the spoken sentence produc-
tion, one can think of decoding the original sequence of meaning
units directly from the acoustic observation. The decoding process
can be based on the maximization of the a posteriori probability
P(M | A) (mazimum a posteriori probability decoding, or MAP
decoding).

The problem now consists in defining a suitable representa-
tion of the meaning of a sentence in terms of basic units. The
representation we chose was inspired by the semantic network [1]
paradigm, where the meaning of a sentence can be represented as a
relational graph whose nodes belong to some category of concepts
and whose arcs represent relations between concepts or linguistic
cases. In our representation, each unit of meaning consists of a
keyword/value pair m; = (k;,v;), where k;, is a conceptual rela-
tion (referred to as concept hereafter), (e.g., origin, destination,
meal in the ATIS domain), and v; is the value with which &; is in-
stantiated in the actual sentence (value hereafter). (e.g., Boston,
San Francisco, breakfast). Given a certain application domain, we
can define the concept dictionary ' = {v1,72,...,7n,}, and for
each concept v; we can define the set of possible values it assumes
T? = {v],v},...,vy;}. Examples of meaning representation for
phrases in the ATIS domain are given in Table 1. Details of the
particular implementation of this paradigm for the ATIS task can
be found in [5, 6, 8, 9].
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3 Training of the Understanding
System

It is interesting to refer to the understanding system as a cas- -
cade of two language translatdrs, as shown in Fig. 1. The natural
language translator analyzes the input sentence expressed in nat-
ural language N-L and transforms it into the representation of
its meaning expressed in a semantic language S-L (in our system
the semantic language coincides with sequences of keyword/value
pairs, as in the examples of Table 1). The semantic language
translator transforms the semantic language S-L into code ex-
pressed in computer language performing the action required by
the sentence (in our system C-L is the language for accessing the
database of flights). Training the understanding system for a new
application consists of the following steps:

1. Defining a semantic language S-L that can express the whole

variety of meanings of the application.

2. Designing or updating the semantic language translator ac-
cording to the newly defined semantic language.

3. Collecting a large set of sentences.

4. Providing each collected sentence with its correct meaning
described in the defined semantic language. Thus each token
in the training set is a pair (n;, s;), where n; is a sentence in
N-L and s; a sentence in S-L.

5. Training the natural language translator.

The first three steps require a great deal of human intervention
and we do not see, at the moment, any way of automating the
procedures. However, some procedures can be designed for reduc-
ing human supervision in the last two steps, namely the semantic
annotation and the estimation of the model parameters. Since the
solution of these problems is not completely general, but depends
on the particular application the system is designed for, we will
refer in the following to the DARPA ATIS task.

3.1

ATIS stands for Air Travel Information System. This task [4] was
built around a subset of the OAG (Official Airline Guide) database
that includes only 10 American cities. Speech is being collected
by different sites [10] giving each subject a scenario with a travel
planning problem to solve. The subjects carry out a dialogue
with a machine (through a human wizard) in order to solve the
problem. The partial and final responses are presented to the sub-
jects via a display or a speech synthesizer. The sentences uttered
by the subject are recorded, transcribed, and annotated carefully.
Among other information related to each recording session, the
annotators include the following:
o A detailed transcription of the sentence in terms of spoken
words, including hesitations, false starts, and some kinds of
noise.

Semantic annotation of the training set

e A categorization of the kind of query. The query can be
context-independent (class A: it can be answered regardless
of the previous query); context-dependent (class D: it can
be answered only with reference to a previous question);
unanswerable (class X: it cannot be answered in the domain
of the specified application).
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HOW | MUCH] IS

THE | PRICE | OF | THE | FLIGHT

FROM | ATLANTA

question

subject

origin

Table 2: Example of conceptual segmentation

e A minimal and a maximal reference answer. The answer to
each valid sentence is represented either by a set of data ex-
tracted from the database, by a numerical quantity, or a by
boolean value (yes or no). Deciding on the right answer to a
question often depends on the interpretation of the sentence
itself. A set of principles of interpretation [10] was compiled
by a special committee within the DARPA ATIS project,
and it is updated any time a new interpretation criterion is
needed.

A correct answer should contain all the information included in the
minimal answer, but no more than that included in the maximal
answer. The hypothesized and reference answers are compared
according to a methodology explained in [3], by a program called
the comparator.

Therefore the annotation already included in the database does
not directly map onto a semantic language that could serve as a
meaning representation language. Besides, the current annotation
in terms of the actual answer to the query cannot be transformed
into a meaning representation since this is a one-to-many rela-
tionship, i.e., the same answer corresponds to a large number of
different queries. The methodology we developed consists in es-
tablishing a training loop in which the output of the comparator
is used as a feedback signal. The procedure is iterative. An initial
model is used for translating each sentence into the correspond-
ing meaning expressed with the defined S-L. Then the semantic
/language translator is used for generating the answer to each sen-
tence, and finally the answer is compared with the reference an-
swers. If the answer is correct, we assume that the representation
of its meaning expressed in S-L is correct and it will be used in the
next iteration for estimating a new model. The whole procedure
can be summarized with the following steps:

1. Start with a reasonable model.

2. Generate an answer for each sentence in the new training
set.

3. Compare each answer with the corresponding reference an-
swer.

4. Use the meaning representation of the sentences that were
given a correct answer to reestimate the model parameters.

5. Update the model and go to step 2

A certain number of sentences will still produce a wrong answer
after several iterations of the training loop. The conceptual seg-
mentation of these sentences may then be corrected by hand and
included in the training set for a final reestimation of the model
parameters.

3.2 Estimation of the model parameters

According to [5) the CHRONUS model consists of two sets of pa-
rameters, namely the concept conditional bigrams P(w; | w;_1,c)
and the concept transition probabilities P(c; | c;1), where w; is
the 4 — th word in the sentence and ¢; is the concept it expresses.
Both sets of parameters can be estimated starting from sentences
that are segmented in terms of conceptual entities. An example
of segmentation is shown in Table 2.
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Set | Number of | Description
Sentences
A 532 handlabled
B 446 annotated
C 195« annotated
(oct-91)
Table 3: Description of the data sets used in the training experi-
ment
Training % correct on | % correct on
set set B set C
A 48.2 63.5
A+smooth 72.3
A+T(B) 50.9 72.8
A+T(B)+smooth 73.3

Table 4: Results using the training loop described in the text.
T(B) is the subset of B that was correctly answered by the system.

One way to provide an initial estimate of a model is by seg-
menting a set of sentences by hand. The initial model can be used
for performing a forced segmentation of each sentence, and the so
obtained segmentation can be used again for reestimating a new
model, and so on, in the same fashion of the segmental k-means
training algorithm [2]. However, in a preliminary experiment we
didn’t notice appreciable changes in performance iterating after
the first segmentation.

Table 3 shows the sets of data used for testing the effective-
ness of the training loop. All sentences are class A (context-
independent) and belong to the MADCOW database. The con-
ceptual segmentation of the sentences in set A was performed by
hand; sets B and C consisted of the officially annotated sentences
(set C corresponded to the October 91 test set). The results of
this experiment are reported in Table 4. The first line in the
table shows the results (as the percentage of correctly answered
sentences) both on set B and on set C when the initial model,
trained on the 532 hand-labeled sentences, was used. The second
line shows the results on set C when the probabilities of the initial
model were smoothed using the supervised smoothing technique
described in [6]. The third line reports the accuracy (on both set
B and set C ) when the sentences that were correctly answered
out of set B were added to the training set (this set is called T(B))
and their conceptual labeling was used along with set A for reesti-
mating the model. It is interesting to notice that the performance
on set C is higher than that obtained with supervised smoothing.
The last line of Table 4 shows that supervised smoothing increases
the performance by a very small percentage. The results of this ex-
periment show that the use of automatically produced conceptual
segmentation along with the feedback introduced by the compara-
tor improves the performance of the system by an amount that is
comparable with that obtained by a supervised procedure.

4 Conclusions

In this paper we reviewed the framework of understanding as a
decoding process in presence of a noisy channel. We also discussed
the implications arising in the implementation of a training proce-
dure that will allow for the minimum amount of human supervi-
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sion. Since in the current DARPA ATIS database only the correct
answer of each sentence is given rather than its meaning, we in-
troduced the comparatorin the training loop. We show that using
this procedure without hand-labeling any new training material
we can actually improve the performance of a system that was
initially trained on a set of manually annotated sentences.
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