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Lexical Access to Large Vocabularies for Speech 
Recognition 

LUCIAN0 FISSORE, PIETRO LAFACE, GIORGIO MICCA, A N D  ROBERTO PIERACCINI 

Abstract-A large vocabulary isolated word recognition system based 
on the hypothesize-and-test paradigm is described. The system has 
been, however, devised as  a word hypothesizer for a continuous speech 
understanding system able to answer to queries put to a geographical 
database. Word preselection is achieved by segmenting and classifying 
the input signal in terms of broad phonetic classes. Due to low redun- 
dancy of this phonetic code for lexical access, to achieve high perfor- 
mance, a lattice of phonetic segments is generated, rather than a single 
sequence of hypotheses. It can be organized as  a graph, and word hy- 
pothesization is obtained by matching this graph against the models of 
all vocabulary words. A word model is itself a phonetic representation 
made in terms of a graph accounting for deletion, substitution, and 
insertion errors. A modified Dynamic Programming (DP) matching 
procedure gives an  efficient solution to this graph-to-graph matching 
problem. Hidden Markov Models (HMM's) of subword units a re  used 
as a more detailed knowledge in the verification step. The word can- 
didates generated by the previous step a re  represented as sequences of 
diphone-like subword units, and the Viterbi algorithm is used for eval- 
uating their likelihood. To reduce storage and computational costs, 
lexical knowledge is organized in a tree structure where the initial com- 
mon subsequences of word descriptions a re  shared, and a beam-search 
strategy carries on the most promising paths only. The results show 
that a complexity reduction of about 73 percent can be achieved by 
using the two pass approach with respect to the direct approach, while 
the recognition accuracy remains comparable. 

I. INTRODUCTION 
PEECH recognition technology is steadily growing to- S ward its maturity. Its growth is supported not only by 

continuous research in all aspects of speech science, but 
also by the impressive advances in microelectronics that 
have made possible the real-time implementation of com- 
plex systems by offering general purpose digital signal 
processors, powerful dedicated processors, and custom 
VLSI circuits [37]. 

Significant results have been achieved in research proj- 
ects by using pattern recognition and stochastic modeling 
methods [28]. Following these paradigms, several com- 
mercial products have been developed and marketed that 
perform very well for simple tasks and in constrained con- 
ditions (single speaker, limited vocabulary, isolated 
words) [4], [33]. Nevertheless, several difficult tasks and 
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applications still exist in automatic speech recognition that 
need further research and engineering efforts to achieve 
systems that are really useful and widely acceptable by 
the end users. 

While natural language continuous speech recognition 
seems to be a long term goal, some less ambitious tasks 
are currently investigated that address relevant problems 
such as speaker independence, telephone bandwidth 
speech quality, robustness in noisy environment, and ac- 
cess to very large vocabularies. Office dictation systems, 
and information access with large vocabulary over the 
telephone line, are emerging as realistic and useful appli- 
cations. Both applications share the need of quickly ac- 
cessing large vocabularies of several thousand words, a 
difficult task even for speaker dependent systems. 

As the number of words to be discriminated is large, it 
is not practically feasible to collect thousands of tem- 
plates, thus it is mandatory that lexical knowledge is built 
from a phonetic transcription of the orthographic form of 
the words. To this aim, subword recognition units must 
be defined that can be trained from a reasonably small size 
learning vocabulary and used as building blocks for the 
words of any lexicon. Furthermore, in order to reduce the 
computational complexity of the pattern matching pro- 
cess, the search for the best matching words must be as 
far as possible focused. The reduction of the searching 
space can be obtained by carefully exploiting the struc- 
tural constraints that a lexicon imposes at the phonologic 
level [ l ] ,  [31], [38], [42] by using the hypothesize-and- 
test paradigm. First, a vocabulary subset to which the ut- 
terance is estimated to belong to is hypothesized on the 
basis of a description that allows a fast search to be per- 
formed. Second, a more detailed and time consuming ver- 
ification process is activated only for words belonging to 
that subset [19], [21], [23], [24], [32]. Different ap- 
proaches can be used in the preselection step. The search 
can be carried out for all words in the vocabulary through 
a very simple and approximate description designed on 
the basis of heuristic knowledge [23] or by assuming that 
the observed label frequencies have Poisson distributions 
[2]. As these kinds of approaches rely on the detection of 
word boundaries, they cannot be directly applied to con- 
tinuous speech. 

A less heuristic method is reminiscent of perceptual 
models of word recognition such as those introduced in 
the Cohort Theory and in the Phonetic Refinement Theory 
[38]. It avoids matching all words by characterizing each 
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lexical entry by means of a partial phonetic description, 
so that acoustically similar words are clustered together 
[20], [27], [31], [45]. From the automatic recognition 
point of view, this is important because broad phonetic 
classes can be hypothesized more reliably than detailed 
phonetic segments. The effectiveness of the latter ap- 
proach, in terms of preselection capability, has been eval- 
uated by examining the statistical properties of large vo- 
cabularies under the assumption of a correct partial 
description of the words [6], [12], [41], [46]. For in- 
stance, as far as Italian language is concerned, describing 
a 13 747 word vocabulary by using only 6 broad phonetic 
classes, 7225 words can be uniquely identified, while the 
maximum and average size of the subset of words bearing 
the same description is 34 and 1.5, respectively [18]. The 
results of these statistical analyses, however, do not take 
into account segmentation and classification errors. These 
errors depend on the inherent variability in speech and 
occur even if the acoustic-phonetic module must discrim- 
inate among a limited number of gross phonetic catego- 
ries. Moreover, lexicon specifications made on the basis 
of a reduced set of symbols can lead to small redundancy, 
that is, a small distortion occurring on a string of symbols 
that corresponds to a set of words is likely to perfectly fit 
the representation of a different set of words. Lexical ac- 
cess must be performed, therefore, through error correct- 
ing procedures that face the problem of high confusability 
of partial descriptions of words by generating a suitable 
set of likely candidates. Although word subsets larger than 
those predicted by an error free analysis are hypothesized, 
the results of several experiments, referring to different 
languages [5], [20], [26], [32], [41], [45], show the sub- 
stantial preselection capability of the method even in the 
presence of classification errors. This paper is devoted to 
the description of an isolated word recognition system 
based on this hypothesize-and-test paradigm. The system 
has been, however, devised as a word hypothesizer, pro- 
ducing a lattice of lexical items, for a continuous speech 
understanding system able to answer to queries put to a 
geographical database [25], [ 161. Strategies and results 
in continuous speech will not be addressed in the follow- 
ing as they are presented elsewhere [ 151, [ 141. Envisaged 
applications are a voice activated directory querying sys- 
tem and a phonetic typewriter [7]. 

Words are preselected by segmenting and classifying 
the input signal in terms of broad phonetic classes. To 
achieve high performance, a lattice of phonetic segments 
is generated, rather than a single sequence of hypotheses. 
It can be organized as a graph in a structure referred to as 
“micro-segmentation. ” Words are hypothesized by 
matching the micro-segmentation graph against the 
models of all vocabulary words. A model is a phonetic 
representation of a word in terms of a graph accounting 
for deletion, substitution, and insertion errors. A modified 
Dynamic Programming (DP) matching procedure gives an 
efficient solution to this graph-to-graph matching prob- 
lem. 

Hidden Markov Models (HMM’s) of subword units are 
the basis of a more detailed knowledge in the verification 
step. The word candidates generated by the previous step 
are represented as sequences of diphone-like subword 
units, and the Viterbi algorithm evaluates their likelihood 
by observing sequences of labels, associated to each cen- 
tisecond of the input signal, obtained by vector quanti- 
zation of 18 cepstral parameters. 

To reduce storage and computational costs, lexical 
knowledge is organized in a tree structure where the ini- 
tial common subsequences of word descriptions are 
shared, and a beam-search strategy carries on the most 
promising paths only. 

This strategy of lexical access has been applied to vo- 
cabularies of different size and complexity. Large exper- 
imentation has been possible because all models can be 
trained without hand labeling or segmentation allowing a 
ready adaptation to new vocabularies and to new speak- 
ers. 

The paper is organized in six sections. Section I1 gives 
an overview of the modules that compose the system. 
Section I11 is devoted to acoustic-phonetic classification 
and to word representation. The Dynamic Programming 
algorithm that solves the problem of matching two graphs 
is introduced in Section IV along with some definitions of 
the local matching costs. The lexical access strategy and 
the results of several experiments for assessing its perfor- 
mance are presented in Section V. Finally, Section VI il- 
lustrates the detailed verification module and its perfor- 
mance. 

11. SYSTEM OVERVIEW 

The modules and the knowledge bases involved in the 
training and in the recognition process are shown in Figs. 
1 and 2. A short introduction of their functions and rela- 
tionship is given in the following. 

Training the system from scratch requires the following 
four steps. 

Codebook Generation: The Feature Extraction mod- 
ule performs a Mel-based cepstral analysis of the signal. 
The signal is collected through a head-mounted micro- 
phone, low-pass filtered at 6 kHz, and sampled at a 12 
kHz rate. An FFT analysis is performed each 10 ms frame, 
over 20 ms overlapping Hamming windows. At each 
frame, a cosine transform is applied that produces a vec- 
tor of 18 cepstral coefficients. A simple endpoint detector 
extracts the portion of the signal corresponding to the ut- 
tered words on the basis of the energy of the frames. A 
fixed amount of the initial and trailing silence is kept to 
prevent occasional deletion of initial and final weak con- 
sonants. The Vector Quantization (VQ) module associ- 
ates to every speech frame a label belonging to a finite 
alphabet of acoustic symbols (codebook), these symbols 
are used as an observation sequence by the HMM’s train- 
ing and verification modules. The VQ codebook is gen- 
erated using the LBG clustering algorithm [30]. All ex- 
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Fig. 2.  Modules active in the recognition phase. 

periments were performed using 7 bit speaker dependent 
codebooks (128 codewords). 

Subword Units Training: The Word Translator re- 
writes, according to a set of phonologic rules, the ortho- 
graphic description of each word into a sequence of sub- 
word recognition units. This sequence is then compiled, 
by the Word Compiler module, into its corresponding 
HMM chain that is trained through the Forward-Back- 
ward algorithm [2 11. The transition and emission proba- 
bilities of each subword unit model are obtained by pro- 
cessing all words of a properly designed training 
vocabulary. Trained units can be used as building blocks 
of the words of any vocabulary, and the Viterbi algorithm 
can estimate the likelihood that a given utterance corre- 
sponds to a word in the vocabulary. It is worth noting that 
all these procedures do not need labeled speech nor hu- 
man interaction. On the contrary, an important byproduct 
of stochastic modeling of subword units is that a speech 
database can be automatically segmented and labeled. In 
fact, once the models are trained, the Viterbi algorithm 
can estimate the best path through the states of the HMM 
chain corresponding to a known utterance, and the bound- 
aries of the units composing the word or the sentence can 
be detected by a traceback procedure. 

Phonetic Classijier Training: This module com- 
putes, from a previously labeled speech database, the pa- 
rameters of the frame-by-frame Phonetic Classifier. The 
Phonetic Classifier estimates the likelihood that a cepstral 
vector belongs to a set of broad phonetic classes. 

Estimation of Phonetic Segments Matching 
Costs: Adjacent frames with the same phonetic label are 
collapsed into segments by the Phonetic Segmentation 
module. A statistical estimation procedure generates the 
costs for the substitution, insertion, and deletion of seg- 
ments (matching costs). As will be detailed in Section 111, 
this module describes an utterance in terms of a lattice of 
phonetic hypotheses rather than by a single sequence of 
segments. 

Fig. 2 shows the overall architecture of the isolated 
word recognition system. A Word Tree Compiler allows 
lexical knowledge to be represented in a compact form by 
merging subword unit sequences into a tree, a convenient 
structure for reducing both storage and computation costs. 
Two representations are produced by this module: the first 
one is the Phonetic Class Tree (PCL Tree), whose nodes 
represent phonetic class labels; the second one is the 
HMM Tree. The lattice generated by the Phonetic Seg- 
mentation module is matched against the PCL Tree by the 
Lexical Access module that selects a reduced set of word 
candidates. These words are then represented by the 
HMM Tree, and the HMM verifier module evaluates the 
most likely candidate in the set through a beam search 
Viterbi algorithm. 

111. PHONETIC SEGMENTATION 
Phonetic segmentation is performed by two modules 

that work in sequence: a frame-by-frame phonetic clas- 
sifier and a phonetic segmenter. 

A .  Phonetic Classijication 
The frame-by-frame labeler estimates, by means of a 

hierarchical cubic polynomial classifier, the likelihood 
that a cepstral vector belongs to the phonetic classes de- 
scribed by the following symbols: 

k ,  = p l :  silence or plosive consonant 

k2 = fr: fricative consonant 

k3 = In : liquid or nasal consonant 

k4 = f v :  front vowel 

k5 = cv : central vowel 

k6 = b v :  back vowel. 

This set of labels will be referred to in the following as 
“classification alphabet.” It has been chosen as a result 
of a preliminary study on the discrimination of words in 
a large Italian lexicon by partial descriptions [ 2 5 ] .  These 
phonetic features are simple enough to be extracted reli- 
ably but, at the same time, they carry sufficient informa- 
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tion to reduce the set of words that are described by the 
same sequence of symbols to a reasonable size. It is worth 
noting that this alphabet is very close to the classification 
schemes proposed for lexical access of the Italian lan- 
guage [25] as well as of other languages [20], [45], [41] 
on the basis of different analyses. Similar categories, in 
particular, have been proposed on a linguistic basis in the 
pioneering work of Shipman and Zue [42]. Even more 
interesting, however, is the consideration that similar 
broad phonetic classes are produced as a result of auto- 
matic clustering of phonemes using several different sta- 
tistical methods. Consider, for example, the results of 
Poritz's experiment on a 5-state HMM cited in [28], and 
classes obtained through different optimization criteria 
such as the maximization of the mutual information or 
transinformation [4 11. Moreover, phonemes can be clus- 
tered into classes on the basis of the distance between 
phoneme HMM's [44], between cepstral parameters [35], 
or between more complex feature vectors [12], [34], con- 
firming that the above-mentioned classes can be reliably 
discriminated. For each 10 ms speech frame, 18 Mel- 
based cepstral parameters ( co, c I ,  * e a , cI7)  are com- 
puted. All of them are used for Vector Quantization in 
order to reduce the codebook distortion, 13 coefficients 
are sufficient for the verijication step, while the compo- 
nents of the primary pattern vector x used for clussijica- 
tion are only the coefficients cI  to c9 and the total energy 
of the frame. The ideal classification of a given frame can 
be described by a target vector: z = [zl, z2, - * * , 161 
where 

zi = 1 if the frame belongs to the ith class 

zj = 0 i f j  # i .  

The classifier gives an estimation d = [ d , ,  d2, - * - , d6i 
of target vector z by using a cubic function of vector x : d 
= K ( x ) .  The classifier assigns to each input frame the 
class k, corresponding to the highest value component d, 
of the estimation vector d [22]. Uncertainty and reject re- 
gions are also considered in the d space. If the estimated 
vector d falls in the neighborhoods of the nearest target 
vector, a single label is assigned to the analyzed frame; 
if its distance from two target vectors is within a given 
threshold, two labels are assigned, otherwise no decision 
is drawn. 

A set of 1105 isolated Italian words (TRA dictionary), 
pronounced by 5 male and 2 female speakers, was col- 
lected for training the frame-by-frame classifier. These 
7735 utterances were automatically labeled in terms of 
phonetic units as will be described in the Section VI, 
where training of HMM's is illustrated, and used for es- 
timating the parameters of 7 speaker dependent classi- 
fiers. 

Another set of 101 1 words, belonging to the dictionary 
of the geographic database query application (GEO), was 
recorded by the same speakers and all tests were per- 
formed on this set of 7077 utterances. The classifier per- 

formance, averaged among the speakers, given in terms 
of percentage of frames assigned to the six phonetic 
classes, is summarized in the class-to-class confusion ma- 
trix of Tables I and 11. Table I shows the results consid- 
ering the best first decision only, while Table I1 considers 
also the possible alternative decision. A total error rate of 
14 and 6.5 percent, respectively, is obtained. 

B. Phonetic Segmentation 

Adjacent frames that are labeled by the same single 
symbol are collapsed into a micro-segment. This proce- 
dure is also applied to adjacent frames that are labeled by 
two symbols which are the same. For a given utterance, 
a two level lattice of coarse phonetic micro-segments is 
obtained. An example of phonetic lattice is shown in Fig. 
3(a), where black segments represent first decision sym- 
bol frames, while gray ones represent alternative decision 
symbol frames; the phonetic class symbol corresponding 
to a segment can be read on the left-hand side of the fig- 
ure. For the sake of clarity, the micro-segmentation of the 
figure is that obtained as a result of the application of the 
majority voting filter that will be introduced in Section 

Micro-segmentation can be represented, therefore, by 
V-B. 

a list of elements: 

M ( t )  = (br, e', s:, a:,  si, a i ) ;  t = I ,  * * 9 T ( 1 )  

where b' and e' are the beginning and ending frames of 
the micro-segment, s', and si are its first and second pho- 
netic labels, and a{  and a: are its classification reliabili- 
ties. Of course, si and a i  are missing whenever a single 
hypothesis is produced. The classification reliabilities a:  
and a: of M (  t )  are defined as 

er 

(2) 
k 

U :  = c ds;; i = 1, 2 
k = b' 

k where ds; is the component related to label s: of estimation 
vector d of the kth frame. The graph corresponding to the 
phonetic lattice of Fig. 3(a) is shown in Fig. 3(b). 

C. Word Representation 

Each word of the lexicon can be automatically trans- 
lated, by means of a set of context sensitive rules, from 
its orthographic form into a number of possible phonemic 
transcriptions taking into account the main speaker vari- 
ations. From the phonemic forms, a set of phonetic rep- 
resentations of the words with different degrees of detail 
can be derived. The choice of a representation alphabet 
depends on a tradeoff between the speedup of the lexical 
search due to the introduction of equivalent phonetic 
classes and the confusability given by a less detailed pho- 
netic knowledge. For example, phonemes /s/ and /v/ are 
both fricatives, but strong fricatives like /s/ are very likely 
to be correctly classified as fricative consonants, while 
weak fricatives like /v/ are quite often classified as liquid/ 
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TABLE I 
CLASS-TO-CLASS CONFUSION MATRIX, BEST FIRST DECISION 

Number of Error 
fr In fv cv bv Rejection Rate Test Frames PI 

Pl 173 853 86.5 4.7 3.8 1.6 1.7 1.7 0.0 13.5 
fr 72 815 3.2 84.3 8.1 2.6 0.4 1.4 0.0 15.7 
In 88 473 1.2 1.9 83.4 7.6 2.9 3.0 0.1 16.7 
fv 140 065 0.6 2.0 6.4 89.9 0.8 0.2 0.1 I O .  I 
cv 94 987 0.8 1.0 3.3 1.7 91.1 2.1 0.0 8.9 
bv 121 844 2.1 4.4 10.2 0.4 1.7 81.1 0.1 18.9 

TABLE I1 
CLASS-TO-CLASS CONFUSION MATRIX, FIRST Two BEST DECISIONS 

Number of Error 
Test Frames PI fr In fv cv bv Rejection Rate 

Pi 173 853 94.9 1.4 1.7 0.8 0.7 0.4 0. I 5. I 
fr 72 875 1.3 90.2 5.5 1.5 0.2 1.3 0.0 9.8 
In 88 473 0.5 0 .9  93.4 2.8 1.3 1 . 1  0.0 6.6 
fv 140 065 0.4 1.0 1.7 96.5 0.3 0. I 0.0 3.5 
cv 94 987 0.4 0.5 1.6 0.8 95.7 0.9 0.1 4.3 
bv 121 844 1.0 2.5 5.6 0.3 0.5 90.0 0.1 10.0 

0 5 10 15 1 9  24 30 35 4 4  54 56 60 
bv 
cv 
fv 
In 
fr 
PI 

Fig. 3. A phonetic lattice. 

nasals. It is possible to better account for these classifi- 
cation errors by representing words in terms of more de- 
tailed classes, but this advantage must be traded with an 
increase of the lexical search space. A compromise has 
been established by evaluating the results of a set of ex- 
periments, described in Section V ,  using the following 
three representation alphabets. 

A , ,  described by the following 12 phonetic classes: 

Consonants Vowels 

h ,  = Spl : plosive h,  = 1 : unstressed front 
hz = Lpl : silence or geminate plosive h, = 11 : stressed front 
hz = Wfr : weak fricative 
h, = Sfr : strong fricative 
h, = Wln : weak liquid or nasal 
h, = Sln : strong liquid or nasal 

h, = A : unstressed central 
h,, = AA : stressed central 
h , ,  = U : unstressed back 
h l z  = UU : stressed back 

where each symbol of the classification alphabet splits into 
two different representation labels accounting for the dif- 
ference between stressed and unstressed vowels and be- 
tween strong and weak consonants; 

A*, an alphabet of 9 classes, where the distinction 
between stressed and unstressed vowels has been elimi- 
nated; and 

A, ,  the same alphabet used for classification (6  
classes). 

As an example, the Italian word FIUME (river), whose 
standard phonemic transcription is /fjume/, is represented 
by the following strings of symbols, depending on the de- 
scription alphabet: 

A,:Wfr I UU Wln I 
A,:Wfr I U Wln I 
A,:fr fv bv In fv 
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ZC(W‘,  si) = 

The representation of a word, in terms of the symbols of 
a description alphabet, will be referred to as 

(3)  w = w 1 w 2  . . . W M  

~ ( i n s ( w ‘ ,  si)) i f s ;  # s i - ’  

CC(sub(w‘, si)) otherwise 
(7 )  

where M is the length of the representation. 

IV. THREE-DIMENSIONAL DP MATCHING 

A word representation which takes into account mis- 
classifications can be modeled by a graph such as the one 
shown in Fig. 4, where the symbols of alphabet A I  are 
used and each link is associated to a cost C ( o p ( h i ,  k j ) )  
corresponding to the alignment operations op ( hi, k j )  be- 
low: 

sub (h, ,  k ] ) :  substitution of test symbol kJ for reference 

ins(h, ,  k ] ) :  insertion of test symbol kJ after reference 

del (h, ): deletion of reference symbol h, . 

The problem of finding the best matching of a reference 
word model against a test micro-segmentation can be 
stated as follows. 

Select one path in word description and one in micro- 
segmentation; each path corresponds to a string of sym- 
bols belonging to the representation and to the classifi- 
cation alphabet, respectively. 

Compute the best alignment cost between these 
strings by using the costs defined in Section IV. 

Repeat this procedure for all path pairs. 
Select the minimum cost path pair. 

Two optimizations must be performed: the innermost 
computes the best alignment cost between two strings, the 
outermost finds out the minimum cost path pair. These 
optimizations are carried out in a single pass by a Dy- 
namic Programming procedure (three-dimensional DP or 
3DP) that develops warping paths in the three-dimen- 
sional space illustrated in Fig. 5. The three dimensions 
represent the nodes of the reference word model (dimen- 
sion R), the sequence of the test micro-segments (dimen- 
sion T), and the levels of the micro-segmentation lattice 
(dimension L). A local cost function G (  r, t, 1 ) is defined 
in the RTL space, where r is a node of the word model 
associated to a symbol of the representation alphabet, t is 
the index of a micro-segment, and I-the lattice level-as- 
sumes the values 1 or 2 referring to the best and to the 
second best segmentation labels, respectively. +k‘k cost 
function G( r ,  t ,  l ) can be computed, for every r, t, and 
I, by the DP equations: 

symbol h, 

symbol h, 

I G ( r -  1 , t -  1 , k )  + C ( S U ~ ( W ‘ , S ~ ) )  

I G ( r -  l , t , k )  + C(del(w‘)) ( 6 )  

Fig. 4. Error model of the word /fjiime/ 

/ I 
/ / 

I / 
I / 

I I/’ I/’ I I )  

W f r  I UU Wln I 

Fig. 5 .  Three-dimensional space. 

where 

where l and k assume the value 2 only if the tth micro- 
segment has two classification symbols. Equations (4), 
(5 ) ,  and (6) acdount for symbol substitution, insertion, 
and deletion, respectively. It is worth noting that this 
structure can lead to “false insertion” events whenever 
adjacent micro-segments have the same phonetic symbol. 
Equation (7) solves this case by considering a micro-seg- 
ment as the continuation of the preceding one if they have 
the same label, CC, being the “continuation cost.” 

For each value of r and t ,  10 equations must be evalu- 
ated in the above formulation [ (6) does not depend on 1 3 .  
A suboptimal solution, reducing the number of equations 
to 4, is used instead, which, given the statistical charac- 
teristics of the-segmentation process, does not substan- 
tially affect the performance of the system. In fact, the 
system of (4, ( 5 ) ,  and (6) carries on all locally optimal 
warping paths. For any given t ,  two optimal alignment 
paths exist bebause both the first and the alternative pho- 
netic label of the tth micro-segment are considered. It must 
be noticed, however, that if the tth micro-segment has one 
label only, optimal partial paths associated to point ( r ,  t 
- 1, 1 )  and to point (r,  t - 1, 2 )  in the RTL space are 
forced to converge, in the next step of DP, to the same 
point (r, t ,  1)  and the DP algorithm keeps the best one 
only. As a single label is associated, on the average, to 
65 percent of the micro-segments, even if the best path 

i 
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selection is made at each step t ,  the results of the match- 
ing procedure should not be appreciably affected. 

A .  Marching Costs 
A simple function for the local matching cost is 

Cl(oP(hi, k j ) )  1 -Log [Prob (op(hi ,  k j ) ) ]  ( 8 )  
hence, 

Cl(sub (hi, k , ) )  = -Log [Prob (substitution of kj for h i ) ]  

Cl( ins (hi, k, ) )  = -Log [ Prob (insertion of kj after h i ) ]  

( 9 )  
These costs are estimated in the training phase by using 

the same phonetically balanced vocabulary (TRA) used 
for training the phonetic classifier. Every uttered word is 
aligned to its phonetic description by means of the 3DP 
procedure. If a word has more than one phonetic descrip- 
tion, the model attaining the minimum alignment cost is 
considered. A backtracking procedure collects, for each 
word, the number of substitutions, deletions, and inser- 
tions of phonetic symbols: 

N sub (hi, k,) = Number of substitutions of kj for hi 

N ins (hi, k,) = Number of insertions of k, after hi 

Cl(del ( h i ) )  = -Log [Prob (deletion of h i ) ] .  

N del ( h i )  = Number of deletions of hi. 

When all vocabulary has been processed, the alignment 
costs can be estimated as follows: 

N tot ( h i )  = c [ N  sub (h i ,  k,) + N ins (hi ,  k , ) ]  
i 

+ N del ( h i ) ]  

Cl(sub (h; ,  k , ) )  = -Log ( N  sub (hi, k J ) / N  tot ( h ; ) )  

Cl(ins ( h i ,  S ) )  = -Log ( N  ins (h i ,  k J ) / N  tot ( h , ) )  

Cl(del ( h i ) )  = -Log ( N  del ( h i ) / N  tot ( h i ) ) .  

(10) 
These costs are reestimated by iterating the training pro- 
cedure until they do not change appreciably. Two or three 
iterations are generally sufficient for obtaining a stable so- 
lution. The “continuation cost” CC is null using this met- 
ric. The initial costs are set as 

= 0 

= 2 otherwise 

if hf belongs to class kj 
‘I( sub k J ) )  1 
Cl(ins (h i ,  k , ) )  = 1 

Cl(del (hi)) = 1. 

This initial setting corresponds to performing a 3DP 
matching using a modified Levenshtein distance [ 171. 

The error rates of the phonetic segmentation, computed 
during the estimation of the alignment costs, in terms of 
the number of deleted, substituted, and inserted seg- 

TABLE I11 
N U M ~ E R  OF SFGMENTATION ERRORS 

Incorrect 
Speaker Sex Deletions Substitutions Insertions 

LA f 8 176 2530 
RF f 25 279 2121 
PD m 18 399 2384 
LF m 38 257 2103 
GM m 44 320 1716 
RP m 34 31 1 2220 
GP m 15 I74 2236 

TABLE IV 
PERCENTAGE OF DELETED, SUBSTITUTED, A N D  I N S E R T E D  SEGMENTS FOR 

EACH PHONETIC CLASS 

Class Deletions Substitutions Insertions 

Pl 0.47 0.23 0.54 
fr 0.23 0.36 5.20 
If1 0.1 I 0.11 7. I O  
fiJ 0.17 0.34 I .74 
C l ,  0.06 0.00 1.41 
bv 0.08 0.12 I .32 
Total 1.12 1.16 17.31 

ments, are shown in Table I11 for 7 speakers. Deletions 
and substitutions of segments are not very frequent, while 
more than 2 insertions per word can be expected. The 
highest contribution to the insertions is due to fricative 
and liquid/nasal consonants as shown in Table IV, where 
the percentage of substituted, deleted, and inserted seg- 
ments, averaged over all speakers, is detailed for each 
class. 

B. Duration and Reliability of Micro-Segments 
Metric C,,  defined in (8), does not take into account the 

micro-segmentation timing structure, a very important cue 
for word hypothesization. A straightforward way to in- 
clude the duration of micro-segments in the matching cost 
is the following: 

C * ( h l ,  kJ* o p ( h f ,  k J ) ( ‘ e n ( M / ) )  

= -Log (Prob ( o p l ( h , ,  k , ) )  * len(M,) ( 1 1 )  

where opl ( h , ,  k , )  is the basic alignment operation of one 
test frame, labeled kJ,  against the reference symbol h, ,  and 
len(M,) is either the duration of micro-segment M,, if 
opl ( h , ,  k , )  is a substitution or an insertion operation, or 
it is the average duration of the h, phonetic class corre- 
sponding to a deletion operation. 

Furthermore, assuming the statistical independence of 
the alignment operations and of the micro-segment reli- 
ability, a matching cost function can be defined as the sum 
of two contributions-an alignment cost and a reliability 
cost as follows: 

kJ,  op(h , ,  k J ) )  

= C , ( h f 9  k J ,  o p ( h f ?  k J ) )  + B ( r ?  op(hf*  k / ) )  ( 1 2 )  



I204 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. VOI. 37,  N O  X. AUGUST 19x9 

is performed by detecting the sequences of phonetic 

computed by means of the 3DP lie in a fixed range of the 
best one. 

A. Experimental Results 3 -  

of the 3DP method. The complete set of 1011 words of 
the GEO vocabulary pronounced by a male speaker was 
used as test. 

Fig. 7(a) shows the rate of inclusion of the correct word 

nodes, and hence the corresponding words, whose costs - 
c 9 5 -  
W 
c 
4 -  

9 0  

U A first set of experiments was devoted to the assessment 8 5 -  

U -  
W 

2 80 
w 

where r is the micro-segment reliability and B is a func- 
tion of the probability density p ( r  I op ( h i ,  k , ) )  that can be 
estimated in the training phase by collecting statistics for 
each operation op ( hi, k,) into a histogram. 

- 

- 

V .  LEXICAL ACCESS 
Even if the number of phonetic micro-segments in a 

word is, on the average, less than the number of centi- 
second frames of about an order of magnitude, the com- 
plexity of matching a micro-segmentation against every 

F l U M l  
FlUME cl GIULIE 

vocabulary word is impractical when the lexicon size is 
of the order of thousands. A representation that reduces 
storage costs and leads to an efficient lexical access is ob- 
tained by merging the sequences of phonetic classes that 
describe the words in a tree in which the initial common 
subsequences are shared [43], [13], [25],  [41]. If the 
nodes of the lexical tree represent phonetic classes, all 
words which share the same coarse phonetic description 
can be associated to the same node (the node representing 
last phoneme) as they become a set of phonetically indis- 
tinguishable lexical items. An example of a simple 12 
words lexical tree is shown in Fig. 6, where all leaves and 
some (terminal) nodes are associated to the set of lexical 
items having the same phonetic structure. A tree is best 
suited to the lexical access task, rather than a more com- 
pact graph structure, because the former allows the N best 
word candidates to be easilv obtained. The 3DP alga- 

Fig. 6 .  A lexical tree 

" 
rithm, in fact, can evaluate the alignment costs of all vo- 
cabulary words in parallel. This operation would be more 
complex and expensive if performed on a graph. 

* ,  I ' l , l l l l l r  

20 40 60 80 100 120 140 

AVERAGE NUMBER OF CANDIDATE noRos 
111 

\ I  

in the candidate list versus the average number of candi- 
date words for three different matching procedures, 
namely, optimal 3DP (curve A), suboptimal 3DP (curve 
B), and DP matching of the best first segmentation hy- 
potheses only (curve C). Word models were represented 
by means of the symbols of alphabet A , ,  and the C, metric 
was used for the evaluation of the costs. The curves were 
obtained as a function of the beam search threshold. 

The 3DP procedure performs considerably better than 
classical DP: fewer candidate words and higher inclusion 
rates are obtained. The optimal and the suboptimal pro- 
cedure give very close results, but the complexity of the 
suboptimal procedure is comparable to the complexity of 
the classical DP [see Fig. 7(b)]. In fact, for each reference 
node and for each micro-segment, 4 equations rather than 

7 5 1  f I ' I ' ' I ' ' 
0 10 20 30 40 5 0  60 

AVERAGE NUMEER OF DP OPERATIONS (XlOOO) 

(b) 
Fig. 7. DP matching procedure comparison: (a) average inclusion rate ver- 

sus average number of candidate words, (b) average inclusion rate versus 
average number of DP operations. 

3 must be evaluated. Suboptimal 3DP has been, there- 
fore, used in all remaining experiments. 

A second set of experiments was carried out for select- 
ing the best representation alphabet. The same test was 
performed by representing the GEO vocabulary words 
through the symbols of the alphabets A , ,  A2 ,  and A3 intro- 
duced in Section 111. Table V shows the number of nodes 
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TABLE V 
NUMBER OF NODES. LEAVES, TERMINAL NODES, A N D  BRANCHING FACTOR 
OF T H E  101 1 WORD GEO LEXICAL TREES USING THREE REPRESENTATION 

ALPHABETS 

Number of 
Number of Number of terminal Branching 

Alphabet nodes leaves nodes factor 

A ,  2656 80 1 894 1.431 

A3 1739 569 749 1.485 
A2 2178 704 875 1.477 

20 40 60 80 100 120 

AVERAGE NUMBER OF CANDIDATE YORDS 

( a )  

100- 

- 98 - 
5 -  
W 

2 96- 

2 

2 94- 
3 2 -  

U 
5 92 - 
w -  
0 

w > -  
U 

2 90 - 

86 ' ' ' ' I I " ' - 
1000 2000 3000 4000 5000 6000 

AVERAGE NUMBER OF DYNAMIC NODES 

(b) 

Fig. 8. Representation alphabets comparison: (a) average inclusion rate 
versus average number of candidate words. (b) average inclusion rate 
versus average number of expanded nodes. 

(N), the number of leaves (L), the terminal nodes (T), and 
the average branching factor of the obtained lexical trees. 

Curves of Fig. 8(a), that present the inclusion rate ver- 
sus the average number of candidates obtained by varying 
the beam search threshold, suggest that a more detailed 
specification of the lexical tree, such as that offered by 
alphabets A ,  and A , ,  does not substantially reduce the 
candidate average size at inclusion rates greater than 99 
percent. Better performance of alphabets A I  and A, ,  com- 
pared to alphabet A 3 ,  for more constraining beam search 
thresholds, is not surprising because more information is 
conveyed by their alignment cost matrices. However, due 

to the scarce redundancy of the micro-segmentation code, 
large values of the beam search threshold must be used 
for obtaining acceptable high performance. Thus, coarse- 
ness of matching turns the accuracy of the model into un- 
helpful. Furthermore, the computational load increases 
when more detailed representation alphabets are used, as 
shown in Fig. 8(b), where the inclusion rate is plotted 
versus the average number of nodes expanded during the 
search. A3 has been, therefore, used as the representation 
alphabet in all successive experiments. 

The third experiment has been carried out to assess sys- 
tem performance as a function of the above-described 
metrics CI ,  C,, and C,. Its results are summarized in Fig. 
9(a) and (b). Timing information (metric C2) gives sub- 
stantial improvements, and further improvements are ob- 
tained by using the reliability of the phonetic labels (met- 
ric C , ) .  

The next set of experiments was performed for seven 
speakers, in the best conditions suggested by the previous 
experiments: suboptimal 3DP, A ,  representation alpha- 
bet, and C3 metric. Fig. 10(a) shows, for various beam 
search thresholds, the inclusion rates and candidate list 
size for all speakers, while Fig. 10(b) presents the aver- 
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aged results. The difference of the average inclusion rate 
among speakers is within 1 percent for the same beam 
search threshold value. Larger values of the threshold do 
not affect appreciably the accuracy of the hypotheses, 
while they considerably increase the average number of 
candidate words and the computation load. On the aver- 
age, about 10 percent only of the items in the lexicon must 
be verified, and substantial improvement can be obtained 
by taking into account the heuristics introduced in Section 
V-B. Fig. 11  shows the average number of word candi- 
dates as a function of the number of syllables in a word; 
superimposed, as a bar graph, is the distribution of words 
in the GEO vocabulary as a function of their number of 
syllables. Short words generate a large number of candi- 
dates because the shorter the uttered word is, the easier it 
is to find, in a large vocabulary, similar or slightly differ- 
ent words in terms of a phonetic description into coarse 
classes. Errors are uniformly distributed among words 
composed of 2, 3 ,  and 4 syllables. No errors were ob- 
served for monosyllabic or very long words. Monosyl- 
labic words are generally well segmented and classified, 
when pronounced in isolation, because they are pro- 
nounced slowly compared to the syllables of polysyllabic 
words as can be observed in Fig. 12, where the average 

._ 
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Fig. 1 1 .  Average number of hypothesized words and distribution of words 
in the GEO vocabulary versus their number of syllables. 

syllable duration is shown as a function of the number of 
syllables in a word. 

Fig. 13 shows the inclusion rate as a function of the 
position of the correct word in the list, ordered by cost, 
of candidates generated by the lexical hypothesizer. In 62 
percent of the cases (bottom-left of Fig. 13), the best 
scored word is the correct one (62 percent is the recog- 
nition rate of the system without verification). Verifica- 
tion can be avoided in 13 percent of the cases because 
only one word is hypothesized, as is shown in Fig. 14, 
where a histogram representing the distribution of the size 
of the candidate word list is reported. 

B.  Use of Heuristics 
Robust heuristics can be introduced in the lexical ac- 

cess procedure to reduce the average number of hypoth- 
esized words and to speed up computation. 

The first one ( H ,  ) smoothes out the strings of phonetic 
labels produced by the frame-by-frame classifier through 
a majority voting filter. Two strings of symbols are con- 
sidered: one corresponding to the best first classification, 
and the other one corresponding to the sequence of alter- 
native decision labels. The second decision symbol is set 
to the value of the best one whenever the classifier has 
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Fig. 13. Cumulative inclusion rate as a function of N-best candidate words, 

(a) 101 1 words, (b) 18 388 words. 

taken a single decision. The majority voting filter, applied 
to a shifting window of N (odd) frames, associates to the 
central frame of the window the phonetic labels that most 
frequently appear as the best first and the alternative de- 
cision, respectively. Fewer micro-segments are obtained 
because many spurious segments are eliminated. This re- 
duction of the number of micro-segments reduces the 
number of operations needed for matching as well. Un- 
fortunately, by increasing the window length, some cor- 
rect segments disappear. Therefore, the number of spu- 
rious insertions decreases, but the number of deleted 
segments increases. The optimal window length depends 
on the speaking rate. Several experiments were performed 
for all 7 speakers varying the beam search threshold in 
order to achieve, for a given length of the majority voting 
filter window, an average inclusion rate of 99.7 percent, 
which is the same obtained excluding any filtering (win- 
dow length equal to 1) .  The results are shown in Fig. 15 
where the average number of candidate words (curve A), 
and the average number of nodes expanded per word 
(curve B) are plotted as a function of the filter window 
size. A window size value of 5 frames gives the minimum 
number of word candidates as well as the minimum com- 
putational complexity. 

0 100 200 300 400 500 

NUMBER OF CANDIDATE WORDS 

(a) 

0 500 1000 1500 2000 2500 

NUMBER OF CANDIDATE WORDS 

(b) 
Fig. 14. Number of candidate words histogram, (a) 101 1 words, (b) 18 388 

words. 
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Fig. 15. Average number of candidate words and average number of ex- 
panded nodes per word versus filter window size. 

A second heuristic ( H 2 )  refers to reliable segments. 
Let R ( s f )  be a function that associates a number r :  to 

the label s: of a micro-segment M ( t ) .  Let R ( s j )  be 
monotonically increasing with the probability that s: is a 
correct classification of the micro-segment M (  t ) .  If such 
a function exists, and if it is continuous, a threshold z and 
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Fig. 16. Probability of correct classification of a cu micro-segment versus 
its reliability. 

TABLE VI 
WORD HYPOTHESIZATION MODULE PERFORMANCE 

H ,  f HZ + H ,  f Ha Heuristics HI HI + H2 HI f Hz + H ,  

Insertion Rate 99.7 99.5 99.5 
Average number of 

candidates 115.2 79.1 72.4 
Average number of 

expanded nodes 5874 4546 4280 
Average number of 

operations 14 570 9828 877 I 

99.5 

62.8 

4280 

877 I 

a value z, can be found such that 

r :  > z 
* Prob [s: is a correct classification I M ( t ) ]  

> U .  (13) 
Thus, in principle, a threshold z can be chosen such that 
it is possible to detect segments whose probability of being 
misclassified is below a fixed value or, in other words, 
segments that can be considered correctly classified with 
a given confidence value. The reliability measure associ- 
ated to micro-segments can be chosen as function R ac- 
cording to the results shown in Fig. 16, where an esti- 
mation of the probability that a micro-segment label is 
correct, given its reliability, is presented for the class cv, 
each phonetic class exhibits a similar behavior. A value 
of the threshold z,  (shown by an arrow in the figure) was 
fixed for each class k,, so that all training set segments 
with reliability greater than z,, were correctly classified: 

a:  > zh * s: E kin. (14) 
During lexical access, a segment satisfying the above- 
mentioned conditions is considered correctly classified. 
Hence, it cannot be inserted or substituted for a reference 
symbol that does not belong to the same phonetic class. 
This further local path constraint in the 3DP procedure 
has two beneficial effects: an appreciable reduction of the 
computational load and of the average number of word 
candidates, for the same inclusion rate. As can be ob- 
served in Table VI, a small reduction of the inclusion rate 
is traded for a sensible reduction of the average candidate 
word number and of the computational load expressed in 
terms of average number of expanded nodes. 

Similar considerations lead to a third heuristic ( H 3 )  that 
exploits robust cues for deciding that a particular phonetic 
class cannot be hypothesized for a given segment. If pho- 

netic class k, cannot definitely be assigned to a micro- 
segment, it cannot be substituted in the 3DP matching for 
a symbol of the representation alphabet belonging to class 
k, .  Frame energy, for example, has been used as a cue 
for deciding that high energy micro-segments cannot be 
substituted for a plosive sound. Table VI shows the per- 
formance obtained by using the H 2  and H3 heuristics, and 
a 5 frame window majority voting filter ( H ,  ). 

As mentioned in the preceding subsection, the largest 
set of word candidates is generated by short words which, 
however, are generally well segmented. Hence, it is likely 
that the correct word is the first position in the candidate 
list. On the contrary, long words often appear at the end 
of their candidate word list, but the list is generally very 
short. The fourth heuristic ( H 4 )  introduces, therefore, a 
constraint on the maximum number of active nodes of the 
lexical tree that are considered for word retrieval at the 
end of the search: only the N best nodes are allowed to 
generate word hypotheses. This constraint is not used dur- 
ing the search because it would be too expensive to order 
the best partial paths according to their cost, rather than 
performing a simple beam search. 

Fig. 13 shows that more than 99 percent of inclusion 
rate can be obtained keeping only the first 60 best candi- 
date words. This result is also illustrated in Fig. 17, which 
shows the inclusion rate and the average number of word 
candidates obtained by varying the value of the maximum 
number ( j ) of best candidate nodes (Mj, j = 40, * . , 
CO) kept by the hypothesizer. Recall that the number of 
candidate nodes is different from the number of candidate 
uw-ds, since more than one word can be associated to a 
candidate node. The performance of the system using all 
these heuristics, constraining the maximum number of fi- 
nal active nodes to 140, is detailed in the last column of 
Table VI. 

In Fig. 18(a), the average inclusion rate is shown as a 
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Fig. 18. (a) Average inclusion rate, and (b) average number of candidate 

words as function of the vocabulary size. 

function of the vocabulary size. Refer also to Fig. 13(b) 
and Fig. 14(b) for statistics about experiments made with 
a 18 388 word vocabulary that contains the union of the 
following sets of words: 

the 1011 word GEO vocabulary used for the recog- 
nition tests, 

the 8000 most frequent words appearing in a 4-mil- 
lion word corpus extracted from a political-economical 
magazine, 

the 13 747 words of the Collins Italian-English 
Pocket Dictionary. 

By increasing the vocabulary size from 1011 words to 
18 388, and using the same beam search threshold, a 
slight reduction (0.7 percent) of the average inclusion rate 
is observed. The increase of the average number of word 
candidates is presented in Fig. 18(b). It is worth noting 
that the percentage of the vocabulary words that must be 
verified decreases as vocabulary size increases: the bold 
right lines in the figure represents 10 and 2 percent of the 
vocabulary size, respectively. 

VI. VERIFICATION MODULE 
This module applies a more detailed phonetic knowl- 

edge than the phonetic classification one. A Word Trans- 
lator generates, from the orthographic form of the words, 
one or more phonetic transcriptions through a set of rules. 
Multiple transcriptions are due, for example, to the am- 
biguity introduced by affricates and by intervocalic /s/ 
that, in Italian, can be voiced or unvoiced depending on 
the speaker regional attitude. Moreover, diphthongs and 
hiatuses are not discriminated by the Word Translator 
which always includes both these forms in the translation. 
The current set of rules produces 1.44 transcriptions per 
word, on the average. Every word phonetic transcription 
is then represented by a sequence of phonetic units, taking 
into account coarticulation phenomena occurring in the 
transitions between different sounds. Phonetic units are 
modeled by left-to-right HMM's with different numbers 
of states [ 101. 

The verification module accepts as input the list of word 
candidates produced by the lexical access module. The 
HMM's sequences corresponding to this set of words are 
organized into a tree structure, where transcriptions with 
common initial 'parts share the same branches. Then, a 
beam search Viterbi procedure is performed on the tree to 
evaluate the most likely words. 

A .  The Recognition Units 
Subword recognition units offer several advantages over 

whole word models in terms of storage saving and in dis- 
criminating words that include similar parts (e.g., mini- 
mal pairs) [36]. In the subword approach, the differences 
in the discriminant parts are enhanced because phonetic 
portions that are equal are represented by the same model. 

This consideration suggests that steady parts of the pho- 
nemes (whenever they can be defined) be represented by 
the same model, and that transitions be accounted for by 
means of additional models only if they carry significant 
discriminant information [lo]. This definition of the sub- 
word units was first proposed for template based systems 
[40], leading to satisfactory results both for Italian [8] and 
for English [39]. These recognition units can be consid- 
ered as a tradeoff between diphones and phonemes. 
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TABLE VI1 
SOME EXAMPLES OF WORD TRANSLATION FROM ORTHOGRAPHIC FORM TO PHONETIC FORM A N D  TO T H E I R  
CORRESPONDING SEQUENCE OF RECOGNITION UNITS.  THE RECOGNITION UNITS ‘’-‘’ A N D  “ b ”  A R E  I H E  

SILENCE A N D  T H E  V O I C ~ B A R ,  RESPECTIVELY 

Orthographic Phonetic 
Form Form Translation into Units 

SETTE Sette s e  - te e 
APPARTIENE Appartjene a - 
AVERE Avere a av ve e er re e 
AVREBBE Avrebbe a av v vr r re e b be e 
ANDARE Andare a n  b d a a  a r r e e  

pa ar r - ti  ie e n e 

Twenty-six phonetic units were considered for the Ital- 
ian language. Of the 650 (26 * 25) possible transition 
units, only 101 were selected according to phonetic 
knowledge and observing the results of recognition ex- 
periments carried out with difficult vocabularies such as 
minimal word pairs [IO]. These 101 transition units in- 
clude all plosivelvowel, affricatelvowel, and some so- 
norant/vowel transitions in addition to some consonant 
clusters. Transitions from vowel to sonorant are consid- 
ered only for consonants /r/ and /VI. Twenty-two steady 
units complete the unit inventory: 5 vowels, 6 sonorants, 
5 fricatives, 4 affricates, silence, and voicebar. Some ex- 
amples of the translation from the orthographic form to 
the phonetic one and finally to the corresponding se- 
quence of units are given in Table VII. Details about the 
context-sensitive translation rules can be found in [ 1 I] and 
[lo]. 

B. Model Estimation 
Hidden Markov modeling of the subword units allows 

model training to be automatically performed. From the 
orthographic form of the training vocabulary words, dif- 
ferent phonemic transcriptions are generated according to 
their possible pronunciations. These alternatives are au- 
tomatically converted into the unit sequence. This oper- 
ation is performed for all training words. The training set 
is composed of one or more utterances of the training vo- 
cabulary represented as sequences of Vector Quantization 
codewords. For each utterance, a forward and a backward 
matrix is computed bootstrapping the system from un- 
trained HMM’s (uniform transition and emission matri- 
ces). For every subword unit appearing in the training da- 
tabase, the transition and emission probabilities are 
estimated by using a generalization to multiple observa- 
tions of the classical reestimation formula [29]. This pro- 
cedure is repeated until convergence is reached. 

C. Exp e rim en tu I Resu Its 
Each speaker trained its set of 123 unit models, by 

pronouncing once the words in the TRA dictionary. Each 
training set consists of about 20 min of speech. These 
utterances were then coded by means of a speaker depen- 
dent 7 bit vector quantizer. Five iterations of the For- 
ward-Backward algorithm were sufficient for obtaining 
stable estimates of the parameters of the models. 
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Fig. 19. Recognition rate versus N-best word scores for the 101 I word 
vocabulary. 

Curve A in Fig. 19 shows the recognition rate, aver- 
aged over all speakers, as a function of the best candidate 
position for the two pass approach (hypothesis generation 
by partial phonetic description and successive detailed 
verification by stochastic decoding). Every word hypoth- 
esized by lexical access is represented by the set of its 
transcriptions into recognition units. All these represen- 
tations are then compiled into a tree whose branches are 
the sequences of states of the HMM recognition units, and 
whose leaves identify words. A beam search Viterbi pro- 
cedure operates on a tree to evaluate the best state se- 
quences. The paths that are still active at the end of the 
search generate a set of word hypotheses ordered accord- 
ing to their likelihood; 95 percent of words attains the best 
first likelihood, while 99.3 percent of the uttered words 
are correctly included in the final set of hypotheses, whose 
average size is 4.4. Curve B in Fig. 19 refers, instead, to 
the results obtained in the direct approach, excluding the 
lexical access module, hence by applying the same beam 
search Viterbi procedure to the tree representing all vo- 
cabulary words. Obviously, slightly worse results are ob- 
tained in the former approach because the lexical access 
module propagates its errors (correct words missing in the 
candidate list) to the verification module. It is worth not- 
ing, however, that there is no difference in the recognition 
rate for the best first hypothesis. This means that a miss- 
ing word in the candidate list produced by lexical access 
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TABLE VI11 
COMPARISON OF THE ONE A N D  TWO PASS LEXICAL ACCESS STRATEGIES 

Direct Two Pass 
Approach Approach 

Best first recognition rate 95.0 percent 94.9 percent 
Inclusion rate 99.9 percent 99.3 percent 

Number of operationlword 

Number of operationiword 

Total number of 

Number of hypotheses 5.5 4.4 

in lexical access - 9342 

in the verification module 99 795 17 200 

operation/word 99 79s 26 542 

1001 I 
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Fig. 20. Recognition rate versus N-best word scores, for the 18 388 word 
vocabulary. 

is also missed as the best scored one by the direct ap- 
proach. By increasing the rank of the accepted hy- 
potheses, the difference between the two curves keeps 
constant and it depends only on the error of lexical access 
(0.5 percent). In Table VIII, a comparison of the perfor- 
mance of the two approaches can be found. As far as com- 
plexity is concerned, the phonetic segmentation and the 
generation of the hypothesis tree for verification are neg- 
ligible in comparison to the matching. Matching requires 
a basic computation both for lexical access and for veri- 
fication: the dynamic expansion of a trellis node. It con- 
sists in the evaluation of the cost of expanding a partial 
path from an origin node to a destination node, and in its 
comparison to the cost of the current best path reaching 
the destination node. As the complexity of cost compu- 
tation is approximately equal for lexical access and for 
verification, a good approximation of the computational 
complexity of the two approaches can be given in terms 
of the average number of expansion operations. A com- 
plexity reduction of about 82 percent is achieved for the 
verification step, and of about 73 percent for the two step 
approach. 

Fig. 20 shows the recognition rate as a function of the 
best candidate position for the two pass approach for the 
18 388 word vocabulary. The best first recognition rate is 
84.7 percent. Relevant improvements, similar to those in 
Fig. 19, can be observed for the best two candidates, 

reaching more than 91 percent of accuracy. About 99.2 
percent of the words are included in the final set of hy- 
potheses whose average size is 2 1.3. 

VII. CONCLUSIONS 
A large vocabulary isolated word recognition system 

has been presented. It is based on a two pass approach 
that relies on an efficient matching algorithm for genera- 
tion of candidate words, and on HMM modeling for their 
verification. The main suggestions deriving from this work 
can be summarized as follows. 

A coarse phonetic segmentation can be more accurate 
than a detailed one, but few misclassifications can dra- 
matically reduce the performance of a lexical access due 
to the small redundancy of the code. 

Robust phonetic segmentation can be achieved by 
generating, rather than a sequence of segments, a lattice 
of phonetic hypotheses to be matched against the vocab- 
ulary words which can be represented by a graph model 
including statistics about possible segmentation errors. 

Lexicon can be effectively represented as a tree, of 
phonetic nodes in the hypothesize step and of HMM sub- 
word units in the verification step. 

A three-dimensional DP matching algorithm has been 
introduced that performs better than other conventional 
algorithms. 

A suboptimal version of the matching procedure can 
be used without appreciable performance degradations. 

The experimental results show the capability of the sta- 
tistical models and of the lexical constraints to cope with 
the errors of the segmentation module. The accuracy of 
the HMM’s of the subword phonetic units in the verifi- 
cation phase has also been assessed. 

Over 99 percent of the correct words are within the first 
5 best candidates for a 101 1 word vocabulary; this accu- 
racy reduces to about 96 percent for a 18 388 word vo- 
cabulary. A robust hypothesization system leads to inter- 
esting applications in the field of isolated and continuous 
speech recognition/understanding tasks. 
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