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Abstract

In designing a spoken dialogue system, developers need to specify the actions a system should take in response to user speech input
and the state of the environment based on observed or inferred events, states, and beliefs. This is the fundamental task of dialogue man-
agement. Researchers have recently pursued methods for automating the design of spoken dialogue management using machine learning
techniques such as reinforcement learning. In this paper, we discuss how dialogue management is handled in industry and critically eval-
uate to what extent current state-of-the-art machine learning methods can be of practical benefit to application developers who are
deploying commercial production systems. In examining the strengths and weaknesses of these methods, we highlight what academic
researchers need to know about commercial deployment if they are to influence the way industry designs and practices dialogue
management.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Automated systems that interact with users using speech
recognition as the primary modality go by various names,
such as spoken dialogue systems, interactive voice response
systems (IVR), voice user interfaces (VUI), or simply,
speech applications. Whatever the name, all of these sys-
tems rely on the fundamental task of dialogue management,
which concerns what action or response a system should
take in response to user input. The action taken may depend
on a myriad of factors, from features of the speech recog-
nizer (e.g., the confidence score of an utterance), to features
of the dialogue interaction (e.g., the number of repairs taken
so far), to features of the application domain (e.g., company
guidelines for customer service), and to the response and
status of external backends, devices, and data repositories.
0167-6393/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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In many system architectures, a distinct dialogue manager

exists to oversee and control the entire conversational inter-
action and execute any number of functions (e.g., Allen
et al., 1998; Polifroni and Seneff, 2000). Some of these
functions include updating new user input, resolving ambi-
guities, managing speech recognition grammars, communi-
cating with external backends, and so forth. Ultimately, the
dialogue manager prescribes the next action for each turn of
an interaction. Because actions taken by the system directly
impact users, the dialogue manager is largely responsible
for how well the system performs and is perceived to per-
form by users—i.e. the user experience.

Given the importance of dialogue management, both as
a research problem as well as a commercial enabler of
advanced applications, researchers have recently been turn-
ing to machine learning methods to formalize and optimize
the action selection process. In particular, one approach
that has been gaining momentum is reinforcement learning
(Sutton and Barto, 1998). In this approach, the dynamic
interaction of a spoken dialogue is represented as a fully
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or partially observable Markov decision process (MDP)
and an optimal policy is derived which prescribes what
actions the system should take in various states of the dia-
logue so as to maximize a reward function. The idea of
having a system that can learn interactively from the
rewards it receives is appealing given the alternative: craft-
ing system responses to all possible user input, which,
unfortunately, characterizes the status quo. In commercial
settings, application developers, together with VUI design-
ers, typically hand-craft dialogue management strategies
using rules and heuristics. At best, these rules are based
on the accumulated knowledge and trial-and-error experi-
ence of industry practitioners. At worst, they are based
on intuition and limited experience. Either way, because
it is extremely challenging to anticipate every possible user
input, hand-crafting dialogue management strategies is an
error-prone process that needs to be iteratively refined
and tuned, which of course requires much time and effort.
The reinforcement learning approach promises to give
application developers a tool for automating the design
of dialogue management strategies by having the system
learn these strategies from feedback data. This casts dia-
logue management as an optimization problem, which,
once solved, could remove the ‘‘art” from the process
and facilitate rapid application development.

In this paper, we present an industry perspective on
machine learning for spoken dialogue management in gen-
eral, and on reinforcement learning in particular. We offer
this perspective in light of the commercial success of speech
applications. What began in academic institutions and
industry laboratories more than 50 years ago has recently
blossomed into a thriving business (Pieraccini and Luben-
sky, 2005). Hundreds of commercial systems are being
deployed each year, adhering to industry-wide standards
and protocols, such as VoiceXML, CCXML, MRCP, etc.
Unfortunately, as researchers have started to point out,
dialogue systems in industry have been evolving on a par-
allel path with those in academic research. Unless a ‘‘syner-
gistic convergence” of architectures, abstractions and
methods is reached from both communities, ideas and tech-
nologies in academic research run the risk of being over-
looked by industry practitioners (Pieraccini and Huerta,
2005). This paper endeavors to bridge the gap between
the two communities so that more research on spoken dia-
logue management can benefit commercial applications,
which in turn would allow the research to impact thou-
sands, if not millions, of customers on a daily basis.

This paper divides into three sections. In the first section,
we describe how commercial applications are built and
delineate the kinds of requirements, specification, and tun-
ing that is typically used for dialogue management. In partic-
ular, we highlight the important role of VUI design and
specification, drawing examples from real applications. In
the second section, we investigate the pursuit of automated
spoken dialogue management and attempt to distinguish
between the hype and reality of automatic learning. In par-
ticular, we review current state-of-the-art reinforcement
learning methods and consider to what extent dialogue man-
agement can be automated by these methods and whether
these methods can be of practical benefit to application
developers. Finally, in the last section, we draw upon the
issues raised in the previous sections to discuss how research-
ers may be able to effectively influence the design and prac-
tice of dialogue management in industry, and in so doing,
allow their research to touch the lives of multitudes of cus-
tomers who interact with deployed commercial systems.

2. Commercial development and deployment

The development of a commercial spoken dialogue sys-
tem (SDS) is a complex process. Dialogue management is
only a part of it, though arguably the most expensive.
Development starts with the collection of requirements,
which describe what the system will and will not do. Before
starting any development activity, requirements need to be
properly and thoroughly defined to contain the scope of the
final product. For example, for a banking application, the
requirements will define which type of transactions the sys-
tem is going to perform, such as account balances, fund
transfer, and other inquiries. Moreover, customers often
have strict business rules that need to define the way certain
operations are performed. For instance, certain transac-
tions may not be performed in the absence of proper user
identification or validation, or the sequence of certain oper-
ations may be constrained. Only after the requirements
have been defined and jointly agreed upon by the customer
and the vendor who is going to develop the application,
can a proper development phase begin.

Development processes are different from vendor to ven-
dor, but they all include a functional specification and a
detailed design of the interaction with the voice user inter-
face (VUI). The functional specification is a high level def-
inition of the different phases of the interaction, and is
typically defined by a workflow where each block encapsu-
lates atomic logical components defined in a hierarchical
structure. For instance, in the simple banking application
mentioned above, a functional module would be defined
for account balance and one for fund transfer. Each high
level module would be expanded into smaller components,
such as requesting the source account, the destination
account, and the amount of money to transfer.

The VUI design phase is mostly concerned with user
experience. As such, it has to deal with the way the system
speaks and interprets user speech input. Commercial sys-
tems are built by logically sequencing predetermined sys-
tem utterances—called prompts—and the interpretation
of the user responses based on context-specific grammars
or statistical language models. The actual interaction logic
is determined by a graph—called the call-flow—where the
arcs are associated with conditional statements based on
user speech input and other variables, and the nodes are
associated with system actions.

Along with the VUI design, there has to be a parallel
activity devoted to the development and tuning of the
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grammars and language models. Most often when new
applications are built, corpora of utterances are not avail-
able to design or train the grammars and the language
models. Thus, an effort has to be made to anticipate all
possible user input for every specific dialogue context. This
is no easy task. The anticipation of user utterances cannot
be done independently of the design of each individual
prompt. VUI designers and application developers have
to work together in order to develop not only the prompts
and grammars, but also the semantic structure, which
defines the values returned by the grammars, and the con-
ditions on the arcs of the call-flow.

One critical aspect of dialogue management is how a
SDS should respond to errors. Because speech recognition
is not perfect, there is always a non-zero chance that a user
utterance will be misinterpreted. Hence, error handling is
an integral part of the VUI design. One common way to
alleviate errors is to use techniques aimed at establishing
a confidence level for the speech recognition result, and
to use that for deciding when to ask the user for confirma-
tion, or reject the hypothesis completely and re-prompt the
user. Too many confirmations as well as too many re-
prompts would annoy users. So, it is important to reduce
the number of confirmations and rejections to a minimum
that also preserves a reasonable level of accuracy.

Backend integration is a large part of the engineering of
a SDS. Most applications need to interact with external
content management systems and tools, such as databases,
customer relationship managers (CRMs), computer tele-
phony integration (CTI) with call-center agents (e.g. screen
pops), diagnostic tools, etc. The absence of a common
interface for these external interactions often makes the
backend integration for each new customer a costly and
laborious engineering task. Moreover, the VUI needs to
be gracefully integrated with the external backend in order
to provide a reasonable user experience. For instance, we
all have experienced, while talking to a customer represen-
tative, the communication disruption that occurs because
of delays in the response of the backend, and how a good
agent can leverage that time for advancing the interaction
on alternative paths. A high performance commercial
SDS should be able to behave in a similar fashion as part
of its dialogue management.

A SDS which is deeply integrated with a backend pose
serious issues for testing and quality assurance. In fact,
testing, which is the next activity after a prototype system
has been completely developed, requires the simulation of
all possible ranges of return values and behaviors for the
backend systems. The combination of all possible backend
and user inputs and behaviors often makes testing a very
cumbersome task which requires a thorough plan for its
completion. The best practice for testing is to plan for it
from the beginning of the design process as opposed to
doing it as an afterthought (McConnell, 2004). Whatever
dialogue management strategies are used, they need to be
devised with the understanding that they can and will be
thoroughly tested.
Testing of a sophisticated SDS is often incomplete, as it
is for any complex software. Bugs always seem to appear
after deployment. This, and the need for a deep understand-
ing of the system behavior in the presence of real users, calls
for thorough monitoring which typically lasts for the whole
lifetime of the commercial application. Monitoring requires
the possibility of accessing different types of logs and
recordings of the dialogue transactions. If the system is
properly structured, one can analyze the logs for a large
number of interactions and report the system behavior at
different levels of resolution, i.e. at the transactional level,
the functional level, the VUI level, and the speech process-
ing level. Besides statistical analyses of the behavior of the
system, it is always useful to listen to interaction recordings
and understand why the behavior of the system does not
exactly match what was predicted and specified during
design. However, listening to interaction recordings is a
costly operation, and the selection of significant interactions
to listen to is extremely important. Monitoring a deployed
system results in a set of recommendations aimed at the
improvement of the design, the correction of possible bugs,
and the beginning of a new development cycle.

The above description of the full cycle of development of
a commercial SDS should give an idea of its complexity and
cost. The point we wish to make with respect to the main
topic of this paper is that dialogue management is only one
part of the development cycle. Although breakdowns of
the full development cost into single components are rarely
published, a rough estimation leads to the conclusion that,
with the current platforms and tools, the design and develop-
ment of the dialogue manager is no more than 15–20% of the
total cost. Although automating that portion might reduce
some cost, because of its tight coupling with other parts of
development, which often require thorough monitoring, it
may be difficult to achieve sustainable levels of automation.
This is not to argue that automating dialogue management is
not worth the effort, but rather that it must be done in appre-
ciation of all the other aspects of developing, deploying and
re-deploying commercial applications.

2.1. VUI completeness

Automating dialogue management design, or at least
parts of it, may indeed be worth the effort in light of an archi-
tectural requirement for almost all commercial applications
called VUI completeness. As explained earlier, any interface
exposed by an enterprise to its customer base needs to be
thoroughly tested and its quality assessed before putting it
online. That means that the behavior of the application
needs to be validated in all possible situations and condi-
tions. In short, VUI completeness entails that all possible
combinations of user inputs and conditions need to be antic-
ipated. No ‘‘unpredicted” behavior can be left unexplored in
a production system. Think, as an analogy, of the effect that
an untested production web site would have on customers of
companies such as Amazon or EBay. Furthermore, think of
the consequences on their businesses if the behavior of those
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web sites were not completely specified, predicted, and com-
pliant with company guidelines. This architectural require-
ment of VUI completeness demands that all possible
outcomes be anticipated so that ‘‘no unpredictable user
input should ever lead to an unforeseeable behavior” (Pie-
raccini and Huerta, 2005). According to VUI completeness,
the only acceptable outcomes are (1) the user fulfills the task,
or (2) a fallback strategy is employed (e.g., handing off calls
to a human operator).

VUI completeness is carried out through a VUI specifi-
cation document, a standard procedure in industry, which
is then reviewed and handed over to a team of developers
who implement the application using their choice of plat-
form. The specification process for any non-trivial com-
mercial application is an arduous task. To give an idea of
the complexity intrinsic in the functional design of a com-
mercial SDS, we can safely say that the call-flow of the
most sophisticated customer-care applications deployed
today—3rd generation dialogue systems (Acomb et al.,
2007)—include several thousands of nodes, prompts and
hundreds of grammars. We show a portion of the call-flow
graph for a troubleshooting application1 in Fig. 1. The
sheer size of the call-flow poses huge scalability problems
for its commercial production and deployment. The only
way to ensure VUI completeness for such a system is by
having a direct mapping between the formalisms and
abstractions used by the VUI specification designers and
1 � 2007 SpeechCycle, Inc.
the programming model available to application develop-
ers. This is the reason why most dialogue managers, and
sophisticated authoring tools, follow the same abstractions
utilized in the VUI specification, and why more sophisti-
cated dialogue management representations have not
found much utilization in commercial settings (Pieraccini
and Huerta, 2005). Although a call-flow graph, such as
Fig. 1, limits the types of dialogue interactions possible
to whatever can be represented by a finite-state controller
(Pieraccini and Huerta, 2005), it is easy to understand, easy
to adjust, and directly matches the conceptual requirements
of the VUI specification process.

The burden of VUI completeness is certainly a selling
point for automating dialogue management. Although it
would seem as if any technology or method that could lighten
this burden would be welcome by application developers,
this is not the case. Application developers do not seek to ful-
fill VUI completeness as just an architectural requirement. It
is a guarantee to their customers. Any technology that could
facilitate VUI completeness must not only persuade VUI
specification designers and application developers to trust
it, but they, in turn, must be able to convince their customers
to trust it. We return to this issue in Section 4.
3. Automating dialogue management design

Developing and deploying a commercial application that
fulfills VUI completeness is clearly a demanding process,
even with streamlining of that process through industry
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standards, tools, and best practices. Given that tuning is
already performed using machine learning techniques, such
as setting language model weights or confidence thresholds,
the natural next step to consider is whether dialogue manage-
ment overall can also be learned and tuned towards the opti-
mization of the automation target and the user experience
using similar techniques. This might circumvent the hand-
crafted nature of devising, testing, and tuning dialogue man-
agement strategies, which typically requires a fair amount of
expertise on the part of the development team. In this sec-
tion, we evaluate the reinforcement learning approach to
dialogue management, while at the same time broadening
our discussion to machine learning in general whenever
appropriate. We first provide relevant background on rein-
forcement learning techniques and then compare the
strengths and weaknesses of these techniques with respect
to the development and deployment issues raised in the pre-
vious section. In so doing, we discuss challenges that need to
be overcome before reinforcement learning techniques can
become commonplace in commercial applications as well
as long-term opportunities for academic research.

3.1. Reinforcement learning

Reinforcement learning addresses the problem of how an
agent should act in dynamic environments so as to maximize
a reward function (Sutton and Barto, 1998). Dialogue man-
agement can be construed as a reinforcement learning prob-
lem in that a SDS needs to take sequential actions, and those
actions should be ‘‘optimal” in some way, such as maximiz-
ing a reward function. A central debate in the reinforcement
learning literature concerns the use of models. Model-free
approaches do not explicitly represent the dynamics of dia-
logue, but instead directly approximate a value function that
measures the desirability of each environment state. These
approaches offer near-optimal solutions that depend on sys-
tematic exploration of all actions in all states (Watkins and
Dayan, 1992). On the other hand, model-based approaches
explicitly represent a model of the dynamics of the dialogue
to compute an estimate of the expected value of each action.
With a model, the SDS can reduce the number of steps it
takes to learn a policy by simulating the effects of its actions
at various states (Sutton and Barto, 1998). Perhaps for this
reason, and for the fact that it is possible to derive a policy
that is optimal with respect to the data, spoken dialogue
researchers have by and large pursued model-based rein-
forcement learning methods (see e.g., Levin et al., 1998;
Singh et al., 2002).

The framework underlying model-based reinforcement
learning is that of the MDP, which can be characterized
by a tuple (S, A, T, R), where:

� S is a finite set of states;
� A is a finite set of actions;
� T is a state-transition function such that T(s0,a, s) =

p(s0—s,a); and
� R : S � A 7!R is a local reward function.
The objective of the SDS is to maximize its expected cumu-
lative reward, which for the infinite time horizon, can
include a discount factor to ensure that rewards accrued
later are counted less than those accrued earlier:

E
X1
t¼0

ctRðst; atÞ
 !

ð1Þ

where c is a geometric discount factor, 0 6 c < 1. The dis-
count factor can be used to model processes that can termi-
nate at any time with probability 1 � c, such as a user
hanging up.

Unfortunately, an MDP requires complete knowledge
of S, which may be intractably large if S encodes all rel-
evant dialogue history variables (Young, 2002). Further-
more, keeping track of unobservable states such as the
user’s intentions and beliefs, which can be inferred from
observations, such as the user’s utterance, has been
shown to improve performance (e.g., Roy et al., 2000;
Williams and Young, 2005; Zhang et al., 2001). If a
SDS cannot observe all states s 2 S, then the MDP is
considered a partially observable MDP (POMDP), and
can be characterized by the tuple (S, A, T, R, O, Z),
where

� S, A, T, R constitute an MDP;
� O is a finite set of observations that can be received from

the environment; and
� Z is the observation function such that Z(o, s,a) =

p(ojs,a).

For the dialogue system, Because the dialogue system never
knows with certainty what the current state is, it maintains
a belief state b(s), or a probability distribution over S. The
local reward is then computed as the expected reward q
over belief states:

qðb; aÞ ¼
X
s2S

Rðs; aÞ � bðsÞ ð2Þ

and the objective of the dialogue system is again to maxi-
mize its expected cumulative reward, as in Eq. (1).

Once a spoken dialogue has been formalized as above,
a number of algorithms can be exploited to learn an
optimal or near-optimal policy from data (Kaelbling
et al., 1996), where an optimal policy p: S ´ A is a map-
ping from states to actions. With a POMDP, deriving a
policy is more complicated (see Kaelbling et al., 1998
for a survey) as the policy itself becomes a mapping from
n-dimensional belief states to actions. A POMDP policy
can be represented in several ways. Perhaps the most per-
tinent for dialogue management is that of a finite-state
controller, which can be learned for relatively simple
interactions with small state spaces and actions (Hansen,
1998). Given that some application developers may
already be familiar with this kind of representation, it
has been investigated for dialogue management (Williams
et al., 2005).
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3.2. Strengths and weaknesses

The formalization in the previous subsection identifies
the key concepts for utilizing a fully or partially observable
MDP for dialogue management. Here, we consider the
strengths and weaknesses of these concepts with respect
to practical deployment, and discuss the challenges that
need to be overcome. For reference, we summarize those
strengths and weakness that we cover in Table 1, as well
as the challenges and opportunities in Table 2.
3.2.1. Objective function

The appeal of reinforcement learning for speech
research may be because dialogue management is cast into
the same kind of statistical framework for optimization as
speech recognition and spoken language understanding
(Young, 2002). Unfortunately, whereas speech recognition
and spoken language understanding is generally based on a
maximum likelihood approach that essentially minimizes
word or concept error rates, in dialogue management, the
objective function is less clear. Eq. (1) states that the SDS
should maximize its expected cumulative reward. However,
Table 1
A summary of strengths and weakness of the reinforcement learning approach

Strengths

Objective function � Optimization framework
� Explicitly defined and adjustable
� Can serve as evaluation metric

Reward function � Overall behavior very sensitive to c

State space and transition function � Once modelled as MDP or POMD
well-studied algorithms exist for de

Policy � Guaranteed to be optimal with res

Evaluation � Can be rapidly trained and tested

Table 2
A summary of a research opportunities for the reinforcement learning approa

Research opportunities

Objective function � Open up black boxes and
Reward function � Adapt reward function/po

� Inverse reinforcement lear
� Learn performance functi

State space and transition function � Learn what state space va
� Apply more efficient POM
� Identify domain-independ
� Identify best practices

Policy � Online policy learning (ex
� Identify domain-independ

Evaluation � Close gap between user m
that objective function could also be based on post hoc
measures such as usability scores (Singh et al., 2002;
Walker et al., 2001), and construed to reflect whatever
qualities application developers may want the SDS to
possess.

The usual practice is to accept the expected cumulative
reward, Eq. (1), as the objective function, and adjust the
reward function R to modify system behavior. However,
the implications of an objective function for modeling dia-
logue have not been well investigated. First, it is unclear
whether every dialogue can be viewed as an optimization
problem with a specifiable objective function. Moreover,
it is unclear how the choice of the expected cumulative
reward, as opposed to any other objective function, affects
the types of dialogue interaction that can be optimized.

Given an explicit objective function, a promising avenue
for research is to optimize speech recognition and/or spo-
ken language understanding using the same objective func-
tion as dialogue management. Just as spoken language
understanding does not require correctly recognizing all
the words, taking appropriate actions, in certain contexts,
may not require correctly identifying all the words and
with respect to practical deployment that we discuss in Section 3.2

Weaknesses

� Unclear what dialogues can and cannot be
modelled using a specifiable objective function
� Not easily adjusted

hanges in reward � Mostly hand-crafted and tuned
� Not easily adjusted

P,
riving policy

� State space small due to algorithmic limitations
� Selection is still mostly manual
� No best practices
� No domain-independent state variables
� Markov assumption
� Not easily adjusted

pect to the data � Removes control away from developers
� Not easily adjusted

with user models � Real user behavior may differ
� Creating user model may be more work than

deploying prototype
� Hand-crafted policy should be tuned to same

objective function

ch that we discuss in Section 3.2

optimize ASR/SLU using same objective function as dialogue manager
licy based on user type or behavior (similar to adapting mixed-initiative)
ning
on for use as reward function
riables are important for local/long-term reward
DP methods

ent state variables

plore vs. exploit)
ent, re-usable error handling mechanisms
odel and real user behavior
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concepts; e.g., in more conversational settings where main-
taining a perception of competence outweighs everything.

For practical deployment, requiring an objective func-
tion to be explicitly specified may be both a strength and
a weakness. It can be a strength in that the objective func-
tion can serve as an evaluation metric for controlled exper-
iments. For example, it can be used to measure the effect of
adding or removing features from the SDS. On the other
hand, it can be a weakness in that most application devel-
opers have little to no experience with optimization or even
statistics, and would likely be hard-pressed to specify an
objective function. They may opt with the default setting,
not understanding how it governs dialogue management,
and later be puzzled as to why the SDS behaves as it does.

In general, applying any machine learning technique to
dialogue management involves committing to an objective
function. Although it is possible to select an appropriate
objective function for optimizing the performance of a
SDS with respect to a data set, it is harder to incorporate
other goals that application developers have for dialogue
management such as representational clarity to ensure
VUI completeness, scalability, maintainability, portability,
code reuse, and ultimately the usability of the interface.
Because dialogue management design is just one part of
the full development process, as discussed in Section 2,
deciding what aspects of the interaction should be opti-
mized for dialogue management is less important than
making sure that whatever objectives they and their cus-
tomers agree upon in their VUI specification document
are fully met.

3.2.2. Reward function

In pursuing the expected cumulative reward in Eq. (1), a
local reward function R must be specified. The typical prac-
tice is to assign a small negative reward for each dialogue
turn and a large positive or negative reward upon complet-
ing the interaction successfully or unsuccessfully.

The local reward function is perhaps the most hand-
crafted aspect of the reinforcement learning framework
for dialogue management. The overall behavior of the sys-
tem, as dictated by the policy, is very sensitive to changes in
R, yet R is almost always set by intuition, not data. For
practical deployment, application developers may find it
too difficult to assign R, as that entails having a good
understanding about how the relative values of R(s, a)
for particular states and actions influence each other as well
as the overall behavior of the system. Although application
developers may be fine, for the most part, to go with rea-
sonable defaults, if they are ever asked to modify the
SDS so that it behaves in a certain way, this will be hard
to do without conceptually understanding R very well.
They may be better off coding heuristics they understand
than to try to tweak R.

Another problem is that R is typically set so that it is
static. However, it may be beneficial to have R adapt to
the user type and/or goal. For example, for airline ticket
reservation, without knowing anything about the user, a
SDS may initially take actions that minimize penalties for
turns. When it becomes clear that the user is more inter-
ested in exploring prices for vacations than purchasing a
ticket, it may be worthwhile to increase the reward for
engaging in longer dialogues and decrease the penalties
for not being in a termination state. Of course, R could just
be construed to be a function of user type or goal. Depend-
ing on the size of the state space S, that may or may not be
feasible. Alternatively, different policies could be learned
for different user types and alternated based upon the like-
lihood of a different user type. This kind of approach is
similar to those that have been taken with adapting the dia-
logue modality between system- and mixed-initiative (Lit-
man and Pan, 2002).

Finally, a promising avenue for future research is to
learn the local reward function by watching a system
behave according to its optimal policy and inferring R.
This line of research is called ‘‘inverse reinforcement
learning” (Ng and Russell, 2000). For dialogue manage-
ment, it may be possible to learn R by observing human
interlocutors engage in dialogue, allowing the SDS to
mimic the human agent. A similar and potentially promis-
ing approach that has been investigated by researchers
(Walker, 2000; Singh et al., 2002) is to learn a performance
function, such as PARADISE, for estimating the reward of
a final dialogue state. The performance function can be
trained on usability data, which itself can be gathered at
the end of user interactions with the SDS. However, it is
still up to the application developer to understand and
appreciate how the performance function is computed
and what effects the different components of the function
have on actual system behavior. For many application
developers, setting a performance function will not be
any easier than setting a reward function.

3.2.3. State space and transition function

So far, the discussion has focused on local and cumula-
tive rewards, but R is a function of both the action space A

and the state space S. The set of actions that a SDS can
take is typically known, and for tractability purposes, kept
small. This leaves open the question of what to include and
how to model S. Indeed, modeling S is perhaps the most
fundamental aspect of reinforcement learning, as it affects
how the dynamics of the SDS operate, how rewards are
assigned, and how tractable policy learning will be. For
systems that currently utilize reinforcement learning,
researchers have limited the state space to just a handful
of variables, which constrains the kinds of domains and
interactions that can be handled by the SDS. Furthermore,
because the transition function T is Markovian, state space
variables must be selected so as to support the Markov
assumption, which may not always be the best option
(Paek and Chickering, 2005). To deal with scalability,
researchers have exploited factored representations of T

to reduce the number of parameters that need to be esti-
mated (Williams et al., 2005) and introduced methods to
scale POMDP dialogue managers to slot-filling problems
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of realistic size (Williams and Young, 2006). However, the
state space still needs to be delineated up front. This is, for
the most part, a manual task. Even for research focused on
selecting state space variables for policy learning (Chicker-
ing and Paek, 2007; Tetreault and Litman, 2006), choosing
candidate variables to test still requires manual selection.

Deciding what state space variables to include is a prob-
lem common to all machine learning techniques in general.
For practical deployment, it is unclear whether application
developers should accept whatever variables researchers
have utilized in their systems. First of all, the research com-
munity has not established best practices for modeling the
state space of a spoken dialogue nor agreed upon a
domain-independent set of variables that could be utilized
in any SDS. Although certain variables, such as the confi-
dence level of the recognition result, are utilized by almost
all systems in research and industry, an interesting chal-
lenge for the field is to ascertain the set of all such common
variables. In extending state space variables to new
domains, application developers may find that they need
to model domain-dependent variables to improve the per-
formance of the SDS (Paek and Chickering, 2005). Alter-
natively, after the system has been deployed, they may
find that they need to add new state variables. In such
cases, the machine learning technique ceases to be an
out-of-box solution. Unfortunately, for the reinforcement
learning approach, adding new variables is not a minor
fix. The entire policy has to be re-learned. As noted above,
modeling the state space is fundamental, and affects
everything.

3.2.4. Policy

The ultimate product of utilizing reinforcement learning
methods for dialogue management is a policy that is opti-
mal with respect to the data. Suppose that somehow trac-
tability ceased to be a limiting factor, and that an
optimal policy could be learned for arbitrarily large state
and action spaces. Even in this ideal situation, the question
of how beneficial an optimal policy is for application devel-
opers still remains.

Consider the issue of representation. As mentioned
before, the policy can be represented in various ways, but
always prescribes an optimal action that the SDS should
take. Although it might seem as if this is what developers
want—namely, a black box which tells the system what
to do—it fundamentally wrests control of the dialogue flow
from their hands, something that developers generally
resist, for good reason. Of all the black boxes in a SDS
(and there could be several, such as the speech recognizer),
the one that affects the users the most is the dialogue man-
ager because that is where all system actions are decided.
Because the business of application developers revolves
around satisfying the needs of their customers, if their cus-
tomers tell them, for example, that they tried the SDS and
were puzzled about how the system took a particular action
after having gone through a series of exchanges, the devel-
oper better know how to fix that one particular action. This
kind of fix, which would be relatively straightforward with
dialogue strategies explicitly written out in code or repre-
sented in a call-flow graph such as in Fig. 1, is much harder
to execute within the reinforcement learning framework
because everything is interwoven. To get an action to
change, and moreover, to change something several turns
into the dialogue, may entail modifying R, S, T, Eq. (1),
and/or c. In short, a considerable amount of expertise in
reinforcement learning is required to do the job, which
might have been as easy as changing a few lines of code
in a more conventional approach.

To get a better idea of how resistant application devel-
opers may be to reinforcement learning, and machine
learning techniques for dialogue management in general,
consider the case of the statistical language model (SLM).
If prevalence is any indication of preference, then
‘‘phrase-based” context-free grammars are much more pre-
valent and preferred in the commercial world than SLMs,
despite the fact that SLMs have been around longer histor-
ically and have demonstrated superior performance.
Although application developers may be aware of the ben-
efits of statistical modeling, such as greater robustness to
out-of-grammar utterances (Rosenfeld, 2000), they often
prefer the deterministic character of context-free grammars
because they know how to control and modify them. And
when they modify them, they can predict exactly what the
results will be.

Fundamentally, what is at issue is the need to ensure
VUI completeness. When application developers settle on
a VUI specification document with their customers, this
is a contract. The system has to perform exactly the way
its behavior was specified and will be tested as such. If
application developers feel that SLMs add too much uncer-
tainty, imagine how they will feel about statistical dialogue
management. In fact, the need to ensure VUI completeness
renders most ‘‘inference-based” dialogue managers (Pierac-
cini and Huerta, 2005) problematic to industry. Inference-
based dialogue managers rely on engines that select actions
based on a formal description of the domain (e.g. in terms
of goals or plans) and drive the application to a solution by
attempting to satisfy well-defined criteria. With dialogue
managers based on finite-state control, such as the call-flow
graph, how the SDS will behave in any situation is explicit
in the representation. Because inference-based dialogue
managers often process many variables and may sometimes
even involve a series of inference steps, it is not immedi-
ately clear how the system will behave.

Compared to other inference-based dialogue managers
that utilize, for example, forms (e.g., Papineni et al.,
1999) or goal hierarchies (e.g., Wei and Rudnicky, 2000),
reinforcement learning has an even more complicated set
of parameters (R, S, T, Eq. (1), c) to adjust in order to
obtain a desired system behavior in a specific context.
The application developer could adjust the policy, but as
soon as that is done, it immediately ceases to be optimal
with respect to the data. However, this may not be so
bad if all that an application developer really wants is a
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first stab at a reasonable policy, to reduce design time. Fur-
thermore, if the data was limited in some fashion, then it
really does not matter if the policy is no longer optimal
because it was only optimal with respect to the data on
which it was learned anyway.

Online policy learning for dialogue management holds
great promise in this regard. As mentioned previously,
dialogue researchers have mostly focused on model-based
reinforcement learning approaches. Although online policy
learning algorithms exist for model-based approaches
(Barto et al., 1995), model-free approaches are more com-
monly utilized (Watkins and Dayan, 1992). Online policy
learning is a promising area because the SDS would not
be limited by the data on which it was trained. Without
having explored all actions in all states, the system could
engage in the type of exploration versus exploitation
dilemma that characterizes classical reinforcement learning
(Sutton and Barto, 1998). To date, very few dialogue
researchers using reinforcement learning have investigated
online policy learning (Chickering and Paek, 2007). Outside
of reinforcement learning, promising statistical approaches
for performing exploration versus exploitation of dialogue
strategies have been shown to improve error recovery over
time (Bohus et al., 2006).

3.2.5. Evaluation

The evaluation, and often the training, of reinforcement
learning techniques for spoken dialogue systems has mostly
centered on user simulation. Ever since researchers began
examining reinforcement learning for dialogue manage-
ment, they have realized that obtaining data to learn a pol-
icy would be problematic (Eckert et al., 1997, 1998).
Because it is impractical, time-consuming and burdensome
to have a SDS explore all different types of actions with
real users, the idea was to learn a generative model of the
user so that user actions could be simulated in response
to system actions (see Schatzmann et al., 2006 for a sur-
vey). With good user modeling, a SDS could be rapidly
prototyped and evaluated. Although this line of research
is promising and might greatly benefit practical deploy-
ment (Pietquin and Dutoit, 2006), the challenge of making
sure that the user model truly reflects what real users are
likely to do, which oftentimes is dependent on very subtle
aspects of the dialogue design and task domain, is a daunt-
ing task.

From a practical standpoint, coming up with a user sim-
ulation that provides realistic training data takes a lot of
work, especially compared to what application developers
currently do now, which is to create an initial prototype
to collect real user data, and then iteratively improve the
system through the normal development cycle. If user sim-
ulations ever become fully domain-independent and re-
usable, it is more likely that application developers will
use them for requirements testing than for training rein-
forcement learning policies.

As noted in Section 3.2.1, having an explicit objective
function can be advantageous in that it can serve as an
evaluation metric. Oftentimes, that metric is difficult to
realize without the aid of user simulation. User simulation
provides a testing environment for conducting controlled
experiments which might be too burdensome for real users.
Unfortunately, just because a SDS does well with respect to
average or total reward in simulations does not guarantee
that real users will ‘‘reward” the system accordingly. In
fact, although the objective function is supposed to glob-
ally optimize the dialogue, it has never really been empiri-
cally evaluated against systems that optimize local
(myopic) decisions. Local optimization may provide a bet-
ter user experience in cases where users unexpectedly
change their behavior in responding to the system; that
is, when local rewards change. For example, when users
become suddenly frustrated, a SDS that is focused on local
decisions may be better prepared to take actions that mol-
lify and keep them engaged. Of course, R can be a function
of user frustration as well, but, as we discussed in Section
3.2.2, that may or may not be feasible.

The question is how well do the simple reward functions
that are commonly used within the reinforcement learning
framework reflect real users’ reaction to a SDS? After all,
depending on the objective function, which itself can be
suspect, the cost of some types of errors, such as misunder-
standings, can be worse than others, such as false rejections
(Bohus and Rudnicky, 2005a). The best practice of course
is to conduct user studies in addition to simulation experi-
ments, which, because of lack of time and resources, is not
often pursued by researchers. An important notable excep-
tion is dialogue research (Walker, 2000; Singh et al., 2002)
where usability ratings are gathered at the end of dialogue
interactions, and used to fit a performance function that
also serves as a reward function. Although this approach
may not necessarily make the reward function more acces-
sible to application developers, as discussed in Section
3.2.2, at least user feedback is leveraged to improve the
system.

Current practices for evaluating reinforcement learning-
based systems need to be scrutinized more carefully. Orig-
inally (Eckert et al., 1997, 1998), user simulations were uti-
lized to take an existing SDS with a large, representative
corpus, and tune it according to a desired performance
measure and user model profile. This approach can be
regarded as a very reasonable post hoc optimization
procedure for gearing a SDS towards a particular user pop-
ulation once a corpus is collected. Because a large, repre-
sentative corpus is a luxury for most researchers, user
simulations began to be utilized to generate data for learn-
ing policies. A big concern is the common practice of test-
ing policies that have been trained on a simulated user
using the same simulated user. This is essentially cheating.
As pointed out in (Schatzmann et al., 2005), policies
trained with a poor user simulation model may appear to
perform well when tested on the same model, but fail when
tested on a better user simulation model. Fortunately, the
converse was not true: policies learned with a good model
will still perform well when tested on a poor model.
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Another common practice is to evaluate reinforcement
learning policies against hand-crafted solutions (e.g., from
an existing SDS) using average or total reward as a metric.
The problem is that the hand-crafted solutions are not typ-
ically optimized according to same objective function, so it
is not a fair comparison. If, for example, a learned policy is
evaluated against a hand-crafted confidence threshold,
then that threshold should be tuned to maximize the
expected cumulative reward.

4. Influencing industry dialogue management

In exploring whether current reinforcement learning
techniques can be of practical benefit to application devel-
opers, we discussed how inference-based dialogue manag-
ers pose difficulties for application developers who need
to ensure VUI completeness. On the other hand, we also
discussed how the need to ensure VUI completeness, which
involves exhaustively anticipating and handling all possible
user input, is itself an argument for automating at least
parts of dialogue management. In applying machine learn-
ing techniques to dialogue management, it is important to
strike a balance between automation and control. In this
section, we discuss where to find that balance in light of
the issues raised in the previous two sections so that
research techniques can more effectively influence the
design and practice of dialogue management in industry.

4.1. Balancing control and automation

As described in Section 2.1, VUI completeness demands
that all possible outcomes of interacting with a SDS be
anticipated so that no unpredicted input can result in an
unforeseen behavior. This, of course, is a tall order, espe-
cially for any non-trivial commercial application. Although
it may seem as if any technology (e.g., machine learning
techniques) that can lighten this burden would find an
immediate audience with application developers, that is
not the case. Because application developers treat VUI
completeness as not just an architectural requirement but
a guarantee to their customers, it is critical that the adopted
technology respects and facilitates the desire of application
developers to maintain control of this guarantee. Hence, a
fundamental principle for engaging industry practitioners
is this: Give application developers enough control to allow

them to ensure VUI completeness.
In the future, it may be that the technologies for auto-

mating dialogue management will become so successful
that application developers will no longer be needed to
ensure and maintain VUI completeness. Likewise, custom-
ers will just trust the technologies. But until that day comes
(if ever), application developers need to have enough con-
trol so that they can convince their customers that their
systems are VUI complete. And if problems should ever
arise after deployment, application developers need to con-
vince them that these problems can be immediately fixed.
Note that application developers need enough control,
not necessarily full control. In fact, there are many aspects
of ensuring VUI completeness that application developers
would be better off automating, as we delineate in the next
section. However, maintaining control at the macro-level is
vital because that is where application developers demon-
strate VUI completeness to their customers. Hence, finite-
state control dialogue managers, such as the call-flow
graph, which utilize the same abstractions as the VUI spec-
ification, have great appeal for application developers and
customers alike (Pieraccini and Huerta, 2005).

Any method for automating dialogue management at
the macro-level should be transparent to application devel-
opers as well as their customers. Furthermore, it should
allow application developers to have fine-grain control of
system behavior, while at the same time, being expressive
enough to allow the implementation of complex behavior
in a simple and cost-effective way (Pieraccini and Huerta,
2005). With any automation technique, the maxim attrib-
uted to Alan Kay should always hold: Simple things should

be simple and complex things should be possible.
One objection that might be raised against giving appli-

cation developers any control at the macro-level is that
whatever they do will be ‘‘hand-crafted” and as such, prone
to error. This is certainly the perspective of die-hard
machine learning advocates who argue that optimal behav-
ior can only be obtained by learning from data. The
assumption, that anything hand-crafted must be more
prone to error than anything learned from data, needs to
be carefully evaluated. Although hand-crafting will proba-
bly not fit data as well as any machine learning technique,
this does not in-and-of-itself guarantee that a hand-crafted
rule that has been devised to optimize the same criterion as
the machine learning technique will perform any worse in
the long run. In fact, the advantage of hand-crafted rules
is they can be easily modified as changes occur and compo-
nents are ported from one application to another. As VUI
designers observe the effectiveness of hand-crafted rules,
they often codify them into best practices. This does not
mean, of course, that machine learning techniques cannot
be part of best practices. Indeed, best practices themselves
may involve any number of machine learning techniques,
as for example, tuning grammar weights and confidence
thresholds. This just means that human inspectability,
maintainability and control are equally important objective
criteria.

Another more general objection is that it is doubtful that
current hand-crafted approaches will be able to continue to
scale to meet the demands of ever more sophisticated appli-
cations. This is a legitimate concern. Academic research
that does not have immediate applicability to industry
problems but address issues that may be decades ahead into
the future is valuable for exactly this reason. However,
unless a new technology suddenly emerges that allows a
SDS to autonomously learn and interact as well as its
human counterpart, and as such inspires the trust of its
employers and users, it is likely that employers will always
want to preserve human inspectability, maintainability
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and control. So far, the abstractions that developers have cre-
ated to scale applications so that they can meet the demands
of a sophisticated domain, as for example, the call-flow
graph shown in Fig. 1, have been able to do the job and
ensure VUI completeness.

It is also important to note that in certain situations,
application developers may be willing to trade off lack of
inspectability and control for better performance. For
example, if a SDS is primarily used in acoustically challeng-
ing environments, users may be better off with a fully auto-
mated system that continually learns than a hand-crafted
solution that requires periodic updating. So far, however,
industry has not witnessed the levels of performance that
would warrant complete trust.

The value of human oversight and control in dialogue
management should never be underestimated. Interacting
with other human beings is incredibly complex, and it is
not clear that automated systems will be able to effectively
process all the nuances of interaction that human beings
monitor. For example, in cultures that utilize honorifics,
grammatically and semantically correct expressions can
still be ‘‘socially inappropriate” (as defined by a native).
Little nuances that hinge on social and cultural expecta-
tions can derail an entire interaction. This is why the pro-
cess of software internationalization or localization
(Esselink, 2000), which involves adapting products such
as publications, hardware or software for non-native envi-
ronments, especially other nations and cultures, is a
respected part of software development. Cultural values,
social context, and even governmental issues such as cen-
sorship and privacy, are all factors that can hinder or pro-
mote the successful deployment of a commercial SDS to a
wide and diverse user population.

4.2. Potential areas for automation

Guided by the principle that we should give application
developers enough control of spoken dialogue management
to allow them to ensure VUI completeness, in this section
we highlight a few research areas that are likely to be
embraced by industry. These are meant as examples of
how techniques for automating different aspects of spoken
dialogue management can relieve application developers of
difficult challenges while at the same time giving them
enough control for VUI completeness. As will be evident
in the examples, the research areas listed involve fine-grain
automation, as opposed to macro-level automation, of dia-
logue management. Indeed, one way of achieving a balance
between automation and control is to focus automation
only on fine-grain decisions, such as the exact wording of
a prompt. This is not intended to argue that macro-level
automation of dialogue management is not possible, but
rather that it is currently unclear what form that kind of
automation would take. Furthermore, several of the exam-
ples purposely involve some degree of reinforcement learn-
ing in order to show that, despite the criticisms raised in
Section 3, reinforcement learning techniques can be made
attractive to application developers. Before delving into
the examples, we first provide a short background on per-
formance metrics in industry.

4.2.1. Industry performance metrics

It is common practice in industry to routinely upgrade a
SDS in order to improve its performance. Typically, the
SDS is deployed for a certain amount of time until suffi-
cient statistics facilitate a reliable estimation of its perfor-
mance, generally characterized by a number of
measurable parameters. Depending on the task the SDS
is designed to automate, several key performance indica-
tors (KPD) are used by customers (even appearing in cus-
tomer–vendor contracts) to measure and assess the quality
of a deployed solution. One KPD that is widely used in the
customer-care industry is the so-called ‘‘automation rate”

(a.k.a., self-service, deflection, or containment rate). The
automation rate is the ratio between the calls that are com-
pletely handled by the SDS and the number of calls it
receives. The calls which are not automated typically fall
into different categories, such as ‘‘escalated” or ‘‘partially
automated” calls (e.g., calls where the system provides
some level of automation, but then escalates it to a human
agent), ‘‘abandoned” calls (e.g., calls where the user hangs
up at an early stage of the interaction), and ‘‘out-of-scope”

calls (e.g., calls that fall outside the domain of competence
of the SDS).

Automation rate is a KPD that businesses care about
since customer savings, return-on-investment (ROI), and
often the vendors’ revenue are all directly related to it.
Although some amount of arbitrariness is involved (e.g.,
the definition of a ‘‘successful” automated call is somewhat
arbitrary for borderline calls), the automation rate is an
objective metric that can be performed automatically on
system logs. On the other hand, another measure of success
which businesses also care about, namely, user experience,
seems to reach beyond the realm of objectively measurable
quantities. However, improving the user experience, in gen-
eral, can have the effect of increasing automation rate, as
evidenced for example in the strong correlation found
between certain features of the interaction (e.g. the number
of speech recognition errors), the user experience, and the
overall automation rate in a PARADISE analysis (Walker
et al., 2000, 2001). Improvements in automation rate can-
not be obtained at the expense of a reduction of the user
experience.

These considerations are reflected in the way commercial
applications are typically improved and updated. Improv-
ing speech recognition performance is an activity that per-
se enhances user experience and the automation rate. As
such, vendors employ routine processes for data acquisition
and grammar tuning, as discussed earlier. But there are
other elements of the spoken dialogue interaction that
require a more global approach, where the use of massive
amounts of data can potentially improve automation rate,
and ultimately, the penetration and acceptance of speech
interfaces in the wider consumer market. These elements fall
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into at least three categories: (1) task-independent behaviors

(e.g., error correction and confirmation behavior), (2) task-

specific behaviors (e.g., logic associated with certain cus-
tomer-care practices), and (3) task-interface behaviors

(e.g., prompt selection).
What the three elements have in common today is the

lack of robust guiding principles which are validated by
empirical evidence. In general, good VUI designers can
come up with good designs based on their experience, but
more often than not, they come up with several competing

designs or choice-points, which can only be validated in a
statistical manner. Hence, it is possible to leverage machine
learning techniques while still allowing designers to have
enough control to ensure VUI completeness. And we will
see, even reinforcement learning can be gainfully employed
to improve dialogue management and provide enormous
value to industry.

4.2.2. Task-independent behaviors

In examining reinforcement learning techniques, we dis-
cussed the difficulties of selecting the proper state space
variables. Some parameters, such as the confidence of the
recognition result, seem to be variables that are likely to
play an important role in making any decision about what
action to take next regardless of the task. This suggests that
perhaps task-independent strategies can be taken as univer-
sal actions regardless of the content of the utterance. This
might be true for dialogue management of clarification
and error recovery (Bohus and Rudnicky, 2005b).
Although various development platforms do support the
inclusion of a ‘‘hidden sub-dialogue” component for man-
aging clarification and error recovery, these components
still need to be tuned, which is for the most part a labor-
intensive, manual process. Any research that could auto-
mate the tuning so that it optimizes performance would
provide great value. For example, Bohus et al. (2006)
describe an online learning approach that significantly
improved non-understanding recovery rate where confi-
dence intervals for the likelihood of success for each recov-
ery strategy were computed in real-time and then used for
exploration versus exploitation in a deployed research
SDS.

Another aspect of task-independent behavior concerns
the handling of operator requests in customer-care applica-
tions. The automation rate, and hence the business advan-
tage of deploying a SDS, is greatly reduced by users who
request an operator early on in the course of the interac-
tion. Specific solutions that have been hand-crafted to
address this problem include: denying escalation in certain
parts of the application task; providing educational dia-
logues which advise users on what the system can and can-
not do; updating users constantly of their progress towards
their goals; and predicting whether the dialogue has gone
awry and invoking actions to remedy that. Again, these
hand-crafted solutions can be augmented by data-driven
policies which can be learned and optimized within a
machine learning framework.
As an example, consider the difficult task of designing
an escalation strategy. There comes a point in an interac-
tion where a SDS should be able to decide whether to con-
tinue handling the task or to fall back to a strategy such as
transferring the user to a human agent. Typically, this is
done by relying on heuristic considerations, such as the
number of speech rejections, or after having exhausted all
possible alternative resolution steps. Machine learning
can be used at an abstract level to predict whether the out-
come of the dialogue will be successful or not (Walker
et al., 2002). If the outcome also has a direct impact on a
computable utility, such as revenue, savings, or call-center
costs, as researchers have shown, it can be included in the
optimization criterion (Paek and Horvitz, 2004; Levin and
Pieraccini, 2006). In fact, it is possible to find an optimal
point where an escalation decision has to be taken in order
to maximize a reward, or reduce the cost of the transaction.

4.2.3. Task-specific behaviors

Industry practitioners have developed effective best
practices for building simple transactional applications of
the first and second generation dialogue systems (Acomb
et al., 2007). As such, there are well-known strategies for
interacting with users to book flights or to order pizzas.
Trying to learn these strategies may end up being a futile
academic exercise. This is not true for third generation,
or problem solving, dialogue systems. Customer-care appli-
cations that help user solve technical support, service pro-
visioning (e.g. mobile telephony), and billing issues are
rather complex. Often the optimal process and steps neces-
sary to approach and solve these issues are not known in
advance, or only superficially known by subject matter
experts (SME). In fact, most of these applications fall
under the general rubric of troubleshooting, which, by its
very nature and complexity constitutes the perfect venue
for machine learning that involves knowledge representa-
tion and reasoning (e.g., using influence diagrams as in
Heckerman et al., 1995). For example, although industry-
wide best practices exist for troubleshooting internet con-
nectivity, software applications, and complex devices, these
practices derive from the domain knowledge and experi-
ence of SMEs. Because human knowledge and experience
is limited, the possibility of training an automated system
that encodes their knowledge using vast amounts of data
to provide customer care is an exciting endeavor. In fact,
automated solutions for complex customer care have
already started to be successfully adopted by industry to
handle millions of calls (Acomb et al., 2007), and some
researchers have even started trying to apply a POMDP
approach to troubleshooting (Williams, 2007).

4.2.4. Task-interface behaviors

Crafting prompts for the interface of a SDS is a difficult
task, and human–computer interaction researchers have
shown that the exact wording of a prompt can significantly
affect user performance and user perception of usability
(Nass and Brave, 2005). Even though industry best practices
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do exist for crafting prompts (Balentine and Morgan, 2001),
after deployment, application developers sometimes find
that they need to adjust the prompts to achieve higher per-
formance. Here is where machine learning techniques can
be of practical benefit. Application developers typically
have a set of possible prompts they would like to explore
for any given state of the dialogue. As such, they could leave
the prompts (i.e., the competing prompt designs) to a rein-
forcement learning algorithm that could then explore the
different outcomes in terms of any specified KPDs, and set-
tle on those solutions that seem to result in the highest per-
formance. This kind of use of reinforcement learning was
investigated with respect to system and mixed-initiative
prompts (Lewis and Fabbrizio, 2006) and also with respect
to open prompts in a natural language understanding sce-
nario (Acomb et al., 2007). Another early example of using
reinforcement learning to pick between a constrained set of
choice-points was the ELVIS system (Walker, 2000), which
explored choices in initiative, summarization and read strat-
egies for email and used fixed strategies elsewhere. The
results of these works suggest that the use of experimenta-
tion and exploitation in VUI design—which has historically
been considered more of an art rather than a science—can
not only improve commercial applications, but also give
application developers a way to maintain control while
allowing machine learning to optimize what they find
difficult.

Choosing the right prompt from among a set of compet-
ing prompts based on a specified objective function is just a
simple use of the reinforcement learning paradigm. The
natural evolution of this practice includes the selection of
competing VUI designs, styles, and even personas. The dif-
ficult and expensive part, however, is to come up with a
number of competing designs and strategies that individu-
ally make sense and can bring substantial improvement to
the overall performance. This undoubtedly would still
require a human in the loop, which is desired anyway to
assure customers of VUI completeness.

5. Conclusion

As spoken dialogue systems continue to expand into all
different kinds of consumer services, research in spoken
dialogue management has the potential to have a direct
impact on the lives of countless consumers who will be
interacting with these systems. The speech industry is bur-
geoning, and a ripe opportunity presents itself for dialogue
researchers who are interested in bringing the fruits of their
labor to the public. But they must understand how com-
mercial development and deployment works in order to
effectively influence the way applications developers design
and practice dialogue management.

In this paper, we discussed the kinds of requirements,
specification and tuning that is typically used for dialogue
management in industry. We highlighted the important
role of VUI completeness, and how application developers
need to ensure VUI completeness as a guarantee to their
customers. In considering whether the load of VUI com-
pleteness can be lightened by machine learning techniques,
we examined to what extent current reinforcement learning
techniques, which have been gaining momentum in
research, can be of practical benefit to application develop-
ers. Finally, we discussed how, in applying machine learn-
ing techniques to dialogue management, a balance must be
found between automation and control if research is to
effectively influence the design and practice of dialogue
management in industry. In particular, we emphasized
how any technology for automating aspects of dialogue
management should give application developers enough
control of spoken dialogue management to allow them to
ensure VUI completeness. We hope that the discussion
and ideas raised by this paper will allow more research in
dialogue management to find its way into commercial
applications.
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