6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

Wheredo we go from here?
Resear ch and commer cial spoken dialog systems.

Roberto Pieraccini

Juan Huerta

IBM T.J.Watson Research Center
1101 Kitchawan Road, Route 134
Yorktown Heights, NY 10598

Abstract

The spoken dialog industry has reached a ma-
turity characterized by a vertical structure of
technology vendors, platform integrators, ap-
plication developers, and hosting companies.
At the same time industrial standards are per-
vading the underlying technology and provid-
ing higher and higher levels of
interoperability. On one hand commercial dia-
log systems are largely based on a pragmatic
approach which aims at usability and task
completion. On the other hand, spoken dialog
research has been moving on a parallel path
trying to attain naturalness and freedom of
communication. However, the evolution of the
commercial path shows that naturalness and
freedom of expression are not necessarily a
prerequisite for usability, given the constraints
of the current technology. The difference be-
tween the two goals has been influencing a
parallel evolution of the architectures and in
particular of the dialog management abstrac-
tions. We believe it is the time to get a high
level perspective on both lines of work, and
aim to a synergistic convergence.

Introduction

effective dialog applications. The three linesedaarch
are, in a way, orthogonal and complementary. The fo
cus of the first is on understanding human commnainic
tion, the second on designing the interface foiblesa
machines, and the third on building those usable ma
chines. The topic of this paper is concerned whi# t
latter, namely the engineering of spoken dialog- sys
tems. However, every discussion on the enginearfng
dialog systems would be flawed if we did not taki®i
consideration both the nature of human-human dia-
log—as this is the most efficient realization obken
dialog available in nature—and the goal of usapbilit

The goal of usability—i.e. building machines that a
usable by untrained users—is often confused wish th
of building human-like conversational systems. Tikis
based on the underlying tacit assumption that enimac
that approximate human behavior—from the linguistic
point of view—is certainly more usable that onettha
does not. Although possibly true in the limit, tlis-
sumption is often misleading, especially if we ddes
that the performance of spoken language techndlogy
today is still far from near-human performance. w-lo
ever, most of the research during the past decade w
directed towards unconstrained natural languager-int
actions, based on the assumption thetiuralnessand
freedomof expression are the essential goals to pursue,
and usability would automatically follow from hagin
reached those goals.

The limitation of current spoken language technglisg
a fact we have to live with. Thus, if we undertdke

There are different lines of research in the figidpo- L . S
ken dialog. Some researchers attempt at underatandi 902! Of building usable systems given that limaai
and possibly replicating, the mechanisms of humal’€ Would find that, for a large number of usefupizp
dialog through linguistically motivated studies bn- ~ cations, naturalness and freedom of expression may

man-human corpora. Others are interested in gener@ftually hinder usability (Oviatt, 1995; Williamsa
design principles that, once applied, would resalt Witt, 2004). For instance, let's consider spoken-la

usable human-machine user interfaces based ontspeec
recognition and speech synthesis technology. Then,
there is spoken dialog system engineering (McTear, spoken language skills by machines, including speec-

2004), WhiCh_ aims at developi_ng programming Styles_, ognition, spoken language understanding and tréms)a
models, engines and tools which can be used ta buil gpeech synthesis and text to speech.

L with the termspoken language technologse refer to
all the technologies that attempt the replicatidrhoman

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

guage understanding technology. In spite of the adince, most users will be lost and would know neithe
vances of the past decade, even in well defined davhat to say, nor what the capabilities and limitasi of
mains, unrestricted understanding of speech isfatil the system are.

to be on a par with humans. So, any spoken language

system that encourages free and natural user éateralhe concept that well structured directed dialogtst
tions is bound to a non-insignificant level of unde gies may outperform natural language free-formrinte
standing errors. Moreover, as of today, there are nactions was realized by speech technology vendors

viable error recovery dialog strategfeavailable for
unconstrained natural language interactions.
versely, there are several types of transactiopglica-
tions that achieve high usability with interactiotst
are notnatural and free After all some call centers
adopt scripts to be followed by their customer merv

during the early and mid 1990s. The developmerat of

Corspoken dialog marketuring those years led to the rise,

in the late 90’s, of a well structured industryspleech
engines, platforms, and tool vendors, applicatievett
opers, and hosting companies, together with an in-
creased attention to the industrial standards. r8kve

representatives (CSR) which do not leave much freestandards are today governing the speech indwsstcy,

dom to caller Most of the applications in this cate-

as VoiceXML 2.6, MRCP, SRGS, SSML’, CCML?,

gory are characterized by a domain model that i weand EMMA’. The speech and the Web world started to
understood by the user population. For instance, thmerge, and the benefits of this standardizationdtre

model for ordering pizzas is known to most of tise u
ers: a number of pies of a certain size (small,iomd
or large) with a selection of toppings (mushrooep
peroni, etc.) The same applies to flight statusao
model: flights can be on time, late, or cancellEdey
arrive and depart daily from airports which serve or

took a momentum amplified by the simultaneous emer-
gence of Web standards (e.g. J2EE, JSP, etc.).

It is interesting to notice that the research comitgu
has often started from dialog approaches basecon g
eral principles (e.g. Grice, 1975) that once codiee

more cities and can be identified by a number or bynachines a reasonable behavior for reacting terdifit

their itinerary and time. Banking, stock tradingep
scription ordering, and many other services belting
the same category.

dialog situations. Then, in order to cope with lin-
tations of the technology, research started falbagk
to more restrictive dialog strategies. In contrdkt
commercial community started from a pragmatic ap-

Generally, when the domain model is quite simpld anproach, where each interaction is practically desig

known by the users, as in the above cases, appficat
can be implemented in a structured dialog fashien-
erally referred to aslirected dialog Directed dialog,
even if seemingly more restrictive from the poirfit o
view of the user, can attain much higher usabdity
task completion rates that free form interactioreslo

in the minimal details byoice user interfac€VUI)
experts (Barnard et al, 1999). After masteringdtadt-
ing of directed dialog applications, the commercial
community is moving now towards more free form
types of interactions. One example of that is wih
spect to those types of applications whairected dia-

with the current technology. In fact, when users arlog cannot be applied. Applications of this type are

prompted to provide specific pieces of informatitire

system can activate grammars designed to collect ex
actly that information. Moreover, as discussed in

(Oviatt, 1995), user guidance reduces user disfiesn
Thus, the combination of user direction, strictngra
mars, and less disfluencies can attain quite higlesh
recognition rates. On the other hand, a more apen
teraction would increase the space of possible eser
pressions at each turn, thus causing a reductidheof
recognition accuracy. Furthermore, without direaitg

2 One of the problems arising when trying to impleime
error recovery in unconstrained speech is the aationde-
tection of recognition errors. In fact, today’'seeph recog-
nition confidence measures are still highly unisa
especially when one attempts to apply them to gostof an
utterance. Without viable error correction, intéi@t with
machines may be extremely frustrating for the user.

3 As a matter of fact, human-human flight reservatio
generally follows a precise script that is dictatgdhe order
of the entries in the CSR database.

characterized by a domain model which is complek an

* http://www.w3.0rg/TR/voicexm|20/

° Media Resource Control Protocol: a protocol foe th
low level control of conversational resources ligeech
recognition and speech synthesis engines--
http://www.ietf.org/internet-drafts/draft-shanmugtranrcp-
06.txt.

% Speech Recognition Grammar Specification: a lan-
guage for the specification of context-free granmsmaith

semantic attachments-- http://www.w3.org/TR/speech-
grammar/.

" Speech Synthesis Markup Language: a language for
the specification of synthetic speech--

http://www.w3.0rg/TR/2004/REC-speech-synthesis-
20040907/.

8 call Control Markup Language: a language for the
control of the computer-telephony layer--
http://www.w3.org/TR/ccxml/.

® Extensible Multi Modal Annotation: a language the
representation of semantic input in speech andismaltal
systems-- http://www.w3.org/TR/emma/.

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

unknown to the majority of users. Help desk applicaances accepted at each turn. The VUI specification
tions, for instance, fall in this class. For exae@ di- document is then handed to a team of developers who
rected dialog system for routing callers to thesubsequently implement the application using tle-pl
appropriate computer support may prompt user \sth: form of choice. In order to reduce developmentgdst
your problem related to hardware, software, or net-is thus important to guarantee a direct mapping/ben
working?But users, most likely, would not know which the formalisms and abstractions used by the VUI de-
of the three categories would apply. A solution ldou signers and the programming model available to the
be providing a menu that includes all possible probdeveloper. This is the reason why, most of comiakrc
lems, but it would be too large to enumerate, antlb dialog managers, follow the same abstraction etiiin

ing a grammar that captures all the possible exfrs the VUI specification.

that can be used to describe all the possible pnabls

impractical. In other words, the underlying domain2-1 ~ Control and Expressiveness

model is largely unknown or vague at best with €8$p | order to allow developers to implement detaNéd
to users. The solution to this problem consistieiiting specifications, the programming paradigm adopted by
callers express themselves freely, and back themys he dialog manager or authoring tools should albow
with a statistical classifier able to assign uségrances fine control of the system behavior. However, a too
to one of the predefined categories. This techniqugqy.evel development paradigm my result in prohibi
known as How May | Help You (Gorin et al., 1997), e development costs for large and complex applic
statistical call routing, or statistical naturahdmiage +ions. Hence the programming paradigm needs also t
understanding (Chu-Carroll and Carpenter., 199%I1Go o expressiveenough to allow implementing complex
etal.,, 2009) is just a simplified form of languag&ler- penayior in a simple and cost effective way. These
standing which c.ombines the robustness. of a stredtu faatures are often competing, since in order toajua
approach (a limited number of categories, or rQutegee more expressiveness the dialog manager hds to a
with the flexibility of natural language (an operompt o,y for sophisticated built-in behavior, which mag
leading to a large number of possible user expessi harq to bypass if one wants to attain a detailedrob
In fact, the dialog can still be structured in @edted ¢ the interface. An effective dialog manager isstthe
dialog manner, because the output of the intemdto eyt of a trade-off between control and expressiv
going to be one of a predefined number of categorie ness. This can be summarized by the following princ
ple: simple things should be easy, complex things
2 VUI Completeness should be possible

The need for a detailed control of the VUI is tlrars
important factor driving the architectural and eegr-

ing choices in commercial dialog systems. We ¢al t The design of a proper dialog management mechanism
the VUI-completenesprinciple: the behavior of an ap- s thus at the core of dialog system engineerirtie T
plication needs to be completely specified withpees study of better dialog managers and proper diatg-€

to every possible situation that may arise during t neering is a way to aim to the reduction of appiiza
interaction. No unpredictable user input Sh°“|drevedevelopment costs. But it is also a way to move to
lead to unforeseeable behavior. Only two outcomes apqre sophisticated human machine interactionsestne
acceptable, the user task is completed, or a f@lba ig only with proper engineering of dialog systernatt
strategy is activated (e.g. escape to operatona®a@ e can raise the complexity threshold that separate
plicit failure statement is expressed). what is realizable from what is not.

3 Dialog Management

In order to ensure that an applicationvigl-complete, There is not an agreed upon definition of whatadadj

its behavior needs to be specified for each passiblnanager is; different systems described in thealitee
situation, or class of situations. Today, a comeplUl - ayyibyte different functions to it. Some of thesec-
specification is _stqndard procedure in commerc&l d tjgng are, for instance: integrating new user inpet
ployments and it is generally represented by atgrapsolying ambiguities, confirming and clarifying the
that describes all the possible dialog states, &Mp cyrrent interpretation, managing contextual informa
mented by tables that describe al the details oh ea 5, communicating with the backend, managing
state. Transitions between dialog states are str gpeech recognition grammars, generating system out-
with conditions based on the user inputs and oth&fis, etc. In fact, the minimal functionality recad by
pieces of information (e.g. previous user inputsg giglog manager covers two fundamental aspect of
backend response, personal user information, 809. interactive applications: keeping track of sessitates
precise wording of system prompts is also specified g geciding what the next action for the systetake
the design, along with an indication of the typeittér- is of course there are many ways of coding these t

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

functions in order to achieve a desired interacbiee The above described architecture has been impletient

havior. in many different forms in research. Of particuilater-
est is the Galaxy architecture (Seneff et al., 19@8ch
4 Reference Architectures was used in the DARPA Communicatoproject and

allowed interchange of modules and plug-and-play
In order to describe different approaches to dia@m- across different research groups.
agement, it is important first to define, at a higlel,
the architecture of spoken dialog systems. One thing to notice in the above described architec

is that the specific language models used by teedp
Figure 1 shows a general functional architecturea of recognition and natural language understandingnesgi
dialog system, mostly used in research prototydes. are supposed to be constant throughout a whol@gess
put speech is collected via a telephreterface and In fact, one of the basic assumptions behind mest r
dispatched to the speech recognition engine whioh p search prototypes is that the system should be table
vides one or more recognition results (for instathee- understand all the possible expressions definethbey
n-best recognition results). Each recognition result idanguage model at any point during the interaction.
then fed to anatural language understandirocessor However it is clear that there is a correlationwesn

the distribution of possible utterances and thdodia

control

I I | state or context. Thus in order to improve syspeam
] speecH CATURAL] formance, the dialog manager can change the parame-
) RECOGNITION [—)| LANGUAGE [ters of the language model and language undersigndi
ENGINE UNDERSTANDING depending on the current dialog context. Severat sy
i 2 tems did implement this feedback loop with resagitin
g TEXT DIALOE 1) 2 improved performance (Xu and Rudniky, 2000).
> — 1 T0 Text %
< SPEECH
Commercial system architectures evolved in a difier

< e way. The basic assumption on which most of the com-
mercial deployed systems were based, and stilliare,
that properly designed prompts can effectively mmnt
Figure 1: Functional architecture of a dialog system the space of user expressions. If that's trueael ¢urn,
mostly used in research prototypes. there is no need for the system to be able to statet
_) all the possible expressions that users could Qagrs
which extracts the semantics of the utterance. r&néd are in factdirected (thus the terndirected d|alog and
representation of the semantics, generally a stredt enticed into speaking exactly what the system espec
set of attribute'value. pairS, is then passed aheodia- It is clear how this assumption, if true, can puwly
log manager. The dialog manager, based on therdurr ajjow the attainment of very high task completiates.
utterance semantics, and on the stored contextt@}i ynder this assumption, commercial dialog systenos pr
mation derived from previous turns, decides thet neXide the speech recognizer with an appropriately de
actionto take according to dialog strategy The most signed grammar at each turn of the interaction.nEac
obvious action performed by the system as a regpins grammar—typically a SRGS standard context-free
a user utterance is a system utterance, or promith grammar with semantic attachments—is specifically
can be generated as text and transformed into BiBec designed to accept the utterances that are exptctesl
a text-to-speeclengine, or selected from a set of prepossible user reactions to the specific prompt quagt
recoded samplés Other types of action performed bythat particular turmn. So, instead of a generic gblike
the dialog manager include interactions with theyello, this is XYZ flight status information lifeow can
backend system, or any other type of processing rehelp you todayZommercial dialog system designers
quired by the application. use more specific prompts such/ze you interested in
arrivals or departures®r From which city is the flight
departing?

10\we refer here to telephone-based systems. Howeva}he benefit of using restricted grammars in dirdcte
the concepts expressed in this paper can be gaeerab dialog applications becomes evident when looking at
other types of system that do not make use of helep the error control logic typically adopted by comgial
communication, such as embedded systems for mdeile gsystems. In fact, even with very restricted gransnar

vices and for automobiles. _ . there is always a chance for the recognizer to yred
High quality prompts are today obtained by spticin

pre-recorded phrases with TTS generated conteig us
concatenative speech synthesis. 12 hitp://communicator.sourceforge.net/

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

erroneous interpretations, or for the user to spggdt- document. The Web server then replies by sendiag th
ances outside the domain. Thus in case of poogreco requested document to the browser, and the interact
tion scores, commercial dialog systedigect users to continues in this fashion.
correct a presumably erroneous interpretation liygus
very strict prompts, such akthink you said Austin, is Using plain vanilla VoiceXML, the dialog manager
that correct? Please say yes or.dnd since the system function is actually distributed across the various
cannot afford to confuse a yes with a no at thistpa VoiceXML documents. In fact each document includes
dialog (misrecognitions in correction sub-dialogswd instructions for the browser to request the nextudo
lead to enormous user frustration), the grammaar aftment once the current one has been executed. @ll th
this prompt is restricted to yes/no utterances amda- VoiceXML documents and the corresponding resources
sonable number of synonyms (such as grammars, prompts, etc.) are typicallyedto
statically on the Web server ardrved® to the browser
Early commercial dialog systems were built using-pr upon request. However, as it happened in the visual
prietary architectures based on IVR (Interactivacéo Web world, developers found the mechanism of encod-
Response) platforms. Soon, the speech applicagen dng the whole system in static VoiceXML pages quite
velopment community realized the importance of 8xdu limiting, and soon they started to write programstioe
trial standards and started to create recommenmdat® server for generating dynamic VoiceXML documents.
guarantee interoperability of platforms and enginedn this case the application is actually managedaby
After the introduction of VoiceXML 1.0 in year 2000 program running on the application server, whicts ac
conversational systems started to conform to argéneas a dialog manager. The introduction of the J2GEB/
Web architecture, such as the one shown in Figure t2chnology makes this process straightforward and i
The convergence of speech and Web technologies (firee with mainstream Web programming.
so called Voice Web) has allowed the speech ingustr
leverage existing Web skills and resources, andaed Generating VoiceXML dynamically on the server has
the need for specialized developers. the advantage of providing the developer with more
powerful computational capabilities than those ladé
]] on the voice browser client, and thus accommodating

" Joice |ENET> a more flexible way the dynamic nature of sophaéd

CLIENT interactions and business logic. Moreover, there ar

i w security restrictions on the client that may preairect
i 1L 5

3 APPLICATION () 3 access to external resources, such as backenchdesab
e SPEECH TEXT g The evolution of server based programming of applic

() | RECOGNITION SPEocH tions brought the separation of the dialog managéme

functionality from the presentation (i.e. the aation of
speech engines, playing of the prompts, etc.), thed
realization of general purpose dialog managerspaod
Figure 2. Typical architecture of commercial dialog sys- gramming models for developing speech applicatams
tem. the server.

SPEECH RESOURCES

The core of commercial dialog systems exemplifigd b!n spite of the differe_nt architectural evolutiof re-
Figure 2 is thevoice browsemwhich accepts documents S€arch and commercial dialog systems, the neea for
written in a markup language specific for speecpliap powerful dialog manager is _felt_by both communities
cations, such as VoiceXML. The voice browser exthe next few sections we will discuss some of teila
changes information with a Web server using thable m_odels of dialog manager which have been-intro
internet protocol (IP) in analogy with the browserd duced in recent years.

server in traditional visual Web applications

VoiceXML markup documents instruct the browser td Programmatic Dialog M anagement

activate the speech resources (speech recognltids,

prompt player, etc.) with a specific set of pareemmt The simplest form of dialog manager is a genere pr
such as a particular grammar for the speech retiogni 9ram implemented in C++ or Java (or as a Javaetervl
engine, a prompt to be synthesized by the texpamsh In the case of Web based architectures) implemgntin
system, or an audio recording to be played. One€sis

speech has been recognized, and the recognitiafisres 13 Voice browsers use caching strategies similahose
retqrned to the browser in the form of a structuwsedof used by visual Web browser. So, large grammars beay
variables, the browser sends them back to the tb We c4cheq on the client and thus avoid large resquimeésion-
server, together with the request of another VoMeX ing latency.

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

the application without an underlying generic iater cation. The logic is implemented by a finite stata-
tion model. Early commercial dialog applicationsreve chine engine which is application independent durd t
typically developed on the deployment platform as n reusable. Thus, rather than coding their own finitge
tive code following a given VUI specification. Be&b machine mechanism, developers had to a descripfion
the advent of VoiceXML and the Web programmingthe finite state machine topology in terms of apbraf
paradigm for voice applications, IVR vendors inte-nodes and arcs. Often the topology could be derived
grated speech recognition engines directly in thiit- from the VUI specification. Then developers had to
forms which had proprietary programming complement that with a set of custom functions re-
environments or proprietary APts quired by the application. Without a separatiomeen

the finite state machine mechanism and its topglogy
However, building each application from scratch bethe implementation of the dialog state machine dogi
comes soon an inefficient and repetitive activitike = was often left to the programming skills of develop
in all areas of software development, vendors tteed often resulting in an unmanageable spaghetti-ligst n
reduce the cost of application development by thims of if-else or casestatements, with increased debugging
ing libraries of reusable functions and interacttiem- and maintenance costs, and made it impossibleitd bu
plates, often for internal consumption, but also aspplications above a certain level of complexity.
products that could be licensed to third partiegrar-
ies were also complemented by programming frame©ne of the obvious advantages of the finite statgrol
works, generally in the form of sample code ormanagement approach is that the topology of theefin
templates, which could be reused and adapted ferdif state machine is generally easier to write, delaungl
ent applications. maintain than the finite state machine mechaniseifit

Moreover, the finite state machine engine can aflmw
Dialog modules, developed by various speech reeognhierarchical and modular dialog definition (e.galdgs
tion and tool providers, constitute one of thetfiems and sub-dialogs). Finally, the engine itself canhbe-
of commercial reusable dialog functions. Dialog mod nessed to verify the overall topology, check foviohs
ules encapsulate all the low level activities reggiito design and implementation mistakes, such as unreach
collect one or more pieces of information from tiser. able nodes, loops, etc., and provide debuggindamd
That includes prompting, re-prompting in case ¢édae ging facilities. More sophisticated engines can ehav
tion and timeout, confirmation, disambiguation, .etc built-in behavior, like for instance handling speci
The collection procedure, including prompts, gram-avigation across dialog networks, recording usage
mars, and logic for standard pieces of informatguth information for personalized services, implementing
as dates, times, social security number, creditl caffunctions such akack-upandrepeat etc. (Pieraccini et
numbers, currency, etc., was thus encoded oncéoand al., 2001).
all in pieces of reusable and configurable software
Developers could also build their own custom dialoglhe simplest form of finite state control dialogmager
modules. Thus dialog modules became, for many, this built around the concept ohll-flow developed ini-
standard approach to directed dialog. Applicatiase tially for IVR systems. In its simplest realizatiancall
then implemented with the programming model availflow is a graph where theodesrepresent prompts, and
able for the chosen platform. Each state of théodia the arcs represent transitions conditioned on the user
flow was associated to a specific dialog moduled anchoice (e.g. Figure 3). By navigating the call flow
the programming model of the platform was the glugraph and selecting the right choices, the usereach

used to implement the whole dialog the desired goal and complete the task. The aal fl
model is quite limited and breaks for complex diglo
6 Finite State Control Management systems since one has to explicitly enumeratehall t

possible choices at any node in the dialog.

Finite state control dialog manager is an improvaime
on the programmatic dialog manager. The finitdéesta In fact the pure call-flow model is inadequate épre-
control dialog manager implements a separation besent even modest levels of mixed initiative, sush a
tween the logic of directed dialog and its actycifi- over-specification, i.e. more than on piece of infa-
tion in a single utterance. For instance, if askedhe

14 Some platforms used GUI application developmendate of a flight® in amixed initiative system that allows
environments that were originally designed for totmne for over-specified requests, users may insteadorekp
(DTMF) applications, and then extended for handling
speech recognition and TTS. Others allowed acaegbet
functionality of the IVR and the speech recognifiors en- 151t looks like the spoken dialog community has a-pen
gines through a published proprietary API, thatldobe chant for applications related to flights. We hapesee
used in C, Java, Visual Basic, etc., other domains of interest in the future.

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

Balance or transfer?

balance transfer

From account?

checking savings checking savings

Provide
savings
balance

Provide
checking
balance

savings
checking
transfer

checking
savings
transfer

Figure 3. Example of call flow.

with any subset of date, origin, (_jestlnatlt_)n, aitha. Figure 4: Graph representing a functional dialog control-
In order to be able to handle this, the simple ftall ler implementing a FIA topology. The conditions thre
model would need to represent explicitly all thesgio arcs exiting a node are verified in the left-toatifashion.
ble subsets of user choices (e.g. date, date + tiate Arcs without conditions arelsearcs.

+ origin, ... date + origin + destination, ...) makitige

. . . model allows arbitrary functions at each node tc ma
design and development impractical.

nipulate arbitrary memory structures that can teresh
across nodes. Thus the extended functional model is

However, one can easily extend the concept of Calnot computationallya finite state modebf dialog; it
flow and allow the state machine to assume anyliopo, "’ P ya dialog;
ust makes use of finite state representatiofor the

ogy, to invoke any arbitrary function (action) atch J

2 - dialog control mechanism. In fact eacbde of the fi-
node, and assume any arbitrarily complex condition nite state machine describing the dialog contratsdo
the arcs. Furthermore, one can allow any arbitraril 9 9

complex data structures (session state) to be bigita not represent univocally thetateof the dialog, because

and readable by the actions associated to the nbdes Vr;']ir?]ifd :tlrsl?c'tgrteikzggggtsé((jje\r/aiﬁﬁ?fggtzllIthe (e
this new extended form, the finite state contreallaj y 0.

manager (we will refer to it as tfienctional modglhas the session state). A functional dialog manager is

. .. __eguivalent to a procedural program with a fixedictr
enough expressive power to represent SOph'Stlcat%Sqre based on ﬁested conzitignal agase statements
directed dialog and mixed initiative interactiodsfull :

. . The nodes are equivalent to function calls, while t
functional model of dialog management can alsovallo conditions are equivalent to the conditional staets,
for recursion, i.e. full dialogs specified in a @tional d '

fashion can be, themselves, used as actions andi-ass %nndct?ox\/hﬁfwil\ila?galsflfnnciilgggluzi;cl)oth?ngﬁgnglrémc()ec
ated to nodes of a higher level dialog, enablingsth X ' g ger s

hierarchical description of applications, and préing ngg C'i;gﬁ?:ﬂi?ii;g;?g:ﬁé%? debug thaet af
modularity and reuse. An example of a control graph :

that handles over-specified utterances is showrign
ure 4 (it will be explained later in this paperMore g3 Handling Mixed Initiative in Functional M od-

detailed descriptions of functional models of dinlo ds
management can be found in (Pieraccini et al, 1997;
Pieraccini et al., 2001). A clear limitation of functional models is in thétey

often require a complete topological definition tbé
There are common misconceptions about the effectii@sk that may be rather complex for certain types o
expressive and computational power of the finiest applications. For instance, the implementation dfeah
dialog model. In fact it is often attributed liniteapa- initiative interactions may result in a control ghawith
bilities with respect to more sophisticated absivas. @ large, unmanageable number of arcs. One way-to re
This misconception derives from the confusion betwe duce the cost of designing and developing mixetiaini
a simple call flow model, which is completely de-tive dialog applications within the functional méde
scribed by a state machine with prompts on the sioddaradigm consists in providing the controller eegin
and choices on the arcs, and the richer functiomalel ~ With a behavior that corresponds to complex topefag
described above. In its simpler form the call flmwdel
is indeed, computationally, a finite state modeldat- I) _
log: i.e. the state of the dialog is univocallyetetined As a proof of this, we leave to the reader tha@se

by the node of the call flow. In contrast, the fiioal of rewriting the controller in Figure 4 as a seésested if-
’ ’ else-if-else statements.

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

without the need for the developer to specify thimse lairline - prompt_airline()
term of nodes and arcs. For example, in (Pieracini Idate - prompt_date()
al., 2001), the concept of state transition wagmoked

to include special GOTO and GOSUB arcs to easily
implement topic changes and digressions at any abde
the dialog. Powerful engines for functional dialogd-

els can also allow for effective authoringgdbbal tran-
sitions that apply to whole sets of nodes.

6.2 Fixed Topology Models

One can implement functional dialog managers tha
allow the developer to specify the control grappole
ogy (Carpenter et al., 2002). On the other hand on
could restrict the control graph to assume a fivogubl-
ogy and allow developers to specify only a limited
number of parameters.

The Form Interpretation Algorithm (FIA), the basis
the VoiceXML standard, is an example of a functlona
model of dialog management with a fixed topology.
The topology of the FIA controller is in fact showg Figure 5. Functional control graph representing a rule

the example in Figure 4. The FIA topology is partic based svstel

larly suited for handling over-specified requesiw-

ing filling forms with multiple-field forms in angrder. 7 |nference Based Dialog M anagers

For instance, if after the initial questiaihich flight?

the user specifies the destination and the airttrearc We have shown in the previous section how several
lorigi nis traversed and the nodei gi n? is exe- forms of dialog manager can be reduced to a unique
cuted next. As a result the user is asked to peotie underlying model: the functional finite-state diglo
origin of the flight. Then, thdat e? node is executed, controller. The difference between them is in wketh
next, since the conditiondat e is true. After the user developers are allowed to change the topology ef th
has provided all the required pieces of informagori- ~ controller, and in the type of authoring (e.g. drap

gin, destination, airline, and date) the sub-diadxgs rules). However, there are classes of applicatfons
through node 3. which a specification through a finite state coliéro

may result impractical. As we discussed earliemgr

Another example of functional model with a fixed to actional applications with a well defined goal (egy-
pology controller is the MIT dialog management sysing information to the user, selling or buying, .pitan
tem (Seneff and Polifroni, 2000). In this case theoften be effectively implemented with a finite stat
control is defined by a sequence of functions trat controller. On the contrary, applications of thelgem
activated when the conditions associated to theen fi Solving type (Allen et al., 2000) require a higdegree
Each function can m0d|fy a session state (i_&ame Of planning, fOI’ Wh|Ch the f|n|te State Contl’0|mn be
memory structure) by adding additional information,duite inappropriate. These types of applicatiossph
including a flag which instructs the controller mhat today, have not yet found a channel to the market o
to do next. Possible flags are: CONTINUE, caushy t SPoken dialog systems, partially because they ate n
execution of the next rule in the sequence, RETURNyet at a level to demonstrate commercially viailln
causing the controller to return to the initialeulor ~ fact their deployment still requires specializedsele
STOP the execution. Again, as in the VoiceXML caseoPment teams and is thus quite expensive. Moreover
developing a dialog does not require the descriptib the performance of the resulting systems is notayet
the control graph, which has the functional form dethe level required for a commercial exploitation.
scribed by Figure 5, but the specification of thad

tions associated to the nodes, and the conditibhe. [N spite of its difficulty, the research communitas
following is an example of a set of rules that iempent ~ Deen actively pushing the technology towards tte-so

the same sub-dialog as the one in Figure 4. tion of the dialog management problem for complex

systems, especially under the auspices of the DARPA

lorigin > prompt_origin() Communicator program. Successful prototypes have
Idestination > prompt_destination() been demonstrated and tested based on sophisticated

dialog managers that deviate from the finite-staie-

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

troller model, and include some degrees of infezeic effectively used for mass production of commercial
distinguishing feature of the inference based systiss systems. One of the problem is that their behaigor
that they refrain from to attempting at a more essl quite complex, and it may be difficult to predidtf@os-
explicit description of the relationship betweeatss sible situations that could arise during the intéom.
and actions, as in the finite state controllerg,rather Thus VUI completeness may be hard to achieve. Re-
resort to engines that draw decisions on the netidra search prototypes, so far, have been built by rekees
to perform based on a general strategy and onmaafor with an intimate knowledge of the quirks of theldin
description of the domain, typically in terms ofad® manager itself. Thus, in order to succeed in tha-co
and sub-goals. Thus, in order to develop an applic mercial arena, inference engines have to produse sy
tion, one starts from a formal description of tlwen&in tems with usability comparable or superior to thiaan
model in such a way to allow the inference engime tequivalent directed dialog for the same task, owie
drive the system to a cooperative solution. services (e.g. problem solving applications) thatnot
be provided with directed dialog, still with usatyilas
In (Stallard, 2001) the dialog control model isctésed the main goal. VUl completeness is an essential re-
by a tree representing the goal/sub-goal structwith, quirement which should be seriously taken into prop
the leaves of the tree being the actions. Actisritéch consideration for the more sophisticated dialog -man
include conditions for their execution, are asseddo ager models.
individual goals. Internal nodes represent condélo
controls on the execution of the underlying nodés. 8 Current Industrial Trends
dialog manager based on task ontology and a hlgrarc
of nodes is described in (Pellom et al., 2000). @f@e Reusable components (Huerta et al, 2005) and pkepac
log manager described in (Wei and Rudnicky, 2000aged applications are the main trends of the imgudt
constructs a dynamic structure, calkgkenda which is spoken dialog systems today. Componentization and
practically a list of sub-goals, where each subl-goa reuse effectively allow reducing deployment costd a
responds to the collection of some piece of infagioma risks and, at the same time, simplifying the desigd
A task is completed when all the items in the agenddevelopment of more sophisticated applications.usTh
are completed. The agenda is created, dynamidally, the commercial world is approaching the creation of
traversing a tree (i.e. thproduct tre¢ that describes the more complex applications through more and more so-
task to accomplish at any point in time. The praducphisticated building blocks which allow reuse antki-
tree is dynamically created since the nature oftéisk play.
may be dynamic as well (e.g. the number of lega in
flight is determined during the interaction and notg Conclusions
known beforehand). In the form based dialog manage
described in (Papineni, 1999) the inference mesani The way applications are authored, what capatsilitie
is driven by a numerical function computed on adfet the systems have, and the overall usability thatven-
partially completed forms (i.e. sets of task-reldva tually perceived by users reflect the differentlgdhat
slots), based on how close each individual hypatkds research and industry have in the field of spokafod
form is to the goal (i.e. the retrieval of infornmat from systems. Whereas usability and cost effectiveness a
the databas¥) the primary goals of the commercial community, re-
search has traditionally aimed at naturalness tefdc-
Another line of research is based on statisticalnig tions and freedom of expression. However, often the
of the dialog strategy using mathematical models ddatter does not necessarily lead to the former. diaal
rived from statistical machine learning, such askda form assumed by dialog managers in both communities
Decision Process (Levin, 2000) or Bayesian networks the consequence of those different goals. Ih fac
frameworks (Meng, 2003). It is still too early te hble order to achieve high usability, commercial deploy-
to understand whether automated design of dialog canents aim at having completely definable interfaces
allow building usable systems whit a quality congpar (control and VUI completeness), using efficient-lan
ble to that of those designed by VUI expert designe guages and architectures (expressiveness and simple
things-should-be-easy) while keeping the ability to
It is not yet clear whether any of the sophistidaite: achieve complex levels of interaction (complex-tsin
ference dialog managers developed in research &euld should-be-possible). At the same time, the focus of
research is towards abstracting, validating andeaeh
ing complex levels of natural interaction. Whilefiast
glance both sets of goals might seem in conflict, w
believe that an evolution towards more complex lleve
of interaction while using an effective development

Y A commercial version of this dialog manager was i
plemented by IBM and used in a financial applicatio
(T.Rowe Price).

6th SIGdial workshop on Discourse and Dialog, Lisb®ortugal, 2-3 September, 2005

framework and implementing a “controllable” (VUI Goel, V., Kuo, H.-K., Deligne, S., Wu S., 2005 figuage
complete) interface is possible. Model Estimation for Optimizing End-to-end Performa

of a Natural Language Call Routing System,” ICASSP
We have shown that most commercial dialog manage- 2005
ment abstractions fall into the functional finitete Gorin, A. L., Riccardi, G.,Wright, J. H., 1997 &pb Com-
controller mechanism, as well as some of the dialog Munication, vol. 23, pp. 113-127, 1997.
managers developed in research. The difference is Grice, H. P., 1975. “Logic and Conversation,” inl€®. and
the constraints applied to the topology of the wler Morgan J. L., edsSpeech AcfsNew York, Academic
and in the type of authoring (graphs vs. rules). Wafee Press, 41-58.
also shown that there is a second category of glialoHuerta, J., Akolkar, R., Faruquie, T., Kankar, Rajput, Ra-
managers, inference based, which is devoted toldhand man, T. V., Udupa, R., Verma, A., 2005., “Reusdbia-
more complex interactions, such as problem solving log Component Framework for Rapid Voice Application

applications. VUI-completeness is required for them Development,” 8th International SIGSOFT Symposium
become viable and reach the level of usability pded ~ ©n Component-based Software Engineering (CBSE 2005)
to succeed in the commercial arena. Levin, E., Pieraccini, R., Eckert, W., 2000. “A 8hastic
Model of Human-Machine Interaction for Learning Dig
We believe that the authoring of applications stidaé Strategies |EEE Trans. on Speech and Audio Process-

aligned with the model used at design time, angsipos ~ '"9: Vol- 8, No. 1, pp. 11-23, January 2000

bly to the runtime environment. In this way efficgyy =~ McTear M., 2004. “Spoken Language Technology,” Sger,
can be achieved at all levels: design, developnaat, 2004.

deployment. The framework should allow for the en-Meng, H.M., Wai, C., Pieraccini, R., “The Use oflidéNet-
capsulation of dialog mechanisms into templatem-co works for Mixed-Initiative Dialog Modeling,” 1EEE
ponents, and subroutines that abstract behaviors. Transactions on Speech and Audio Processing, IoIN1
Beyond allowing for a reduction of development spst 6 PP- 757-773, November 2003.

this is also the first step towards the implemémitaof Oviatt, S. L., 1995. “Predicting spoken disfluersciduring
more complex interaction mechanisms. Finally, the human-computer interactionComputer Speech and Lan-
framework should have strict “directed” and thusco guage 1995, 9:19--35.

trollable default behavior, but at the same timeudth Papineni, K., Roukos, S., Ward, R., 1999. “Fre&fDialog

allow for more complex interactions to be triggered Management Using FormsPtoc. of Eurospeecti999
and when these dialog mechanisms would benefit theellom, B., Ward, W., Pradhan, S., 2000. “The CUn@wini-
interaction (e.g., power users). cator: an Architecture for Dialog Systemk;SLP 2000

. o . . Pieraccini, R., Levin, E. and Eckert, W., 1997. “KBA: the
We believe that a consolidation of the goal priesit AT&T Mixed Initiative Conversational Architecture,”
(i.e. usability and naturalness of interaction)wesn Proc. of Eurospeech 9Rhodes, Greece, Sept. 1997.

research and the commercial world will foster farth oo cini R Caskey, S., Dayanidhi, K., Carpere, Phil-
maturation of the technology. For this to happen, ips M., 2001. “ETUDE, a Recursive Dialog Manager

though, thedialog needs to start. with Embedded User Interface Patterrrdc. of ASRUOL
— |IEEE WorkshopMadonna di Campiglio, Italy, Dec.
References 2001,
Seneff, S., Lau, R., Polifroni, J, 1999. “Organiaaf Com-
Allen, J. F., Ferguson, G., Stent, A., 2000. Diakygtems: mumcauc:n, And Control In The Galaxy-li Conversatal
From theory to practice in TRAINS-96. in Dale R.pisl System, “ Eurospeech 1999.
H., Somers H. edsHandbook of Natural Language Proc- Seneff S., and Polifroni, J., 2000. "Dialogue mamagnt in
essing Marcel Dekker, New York, 347-376. the MERCURY flight reservation system," iBatellite
Barnard, E., Halberstadt, A., Kotelly, C., Philligd., 1999 Dialogue WorkshopANLP-NAACL, Seattle, April, 2000.
“A Consistent Approach To Designing Spoken-dialogStallard, D., 2001. “Dialogue Management in the KTal
Systems,"Proc. of ASRU99 — IEEE Workshdfeystone, Travel System,“Proc. of ASRUO1 — IEEE Workshop,
Colorado, Dec. 1999. Madonna di Campiglio, Italy, Dec. 2001
Carpenter, B., Caskey, S, Dayanidhi, K., Drouin, Rlerac- Wei, X., Rudnicky, A., 2000. “Task-based managemssimg
cini, R., 2002. “A Portable, Server-Side Dialog i an agenda,” ANLP/NAACL 2000
work for VoiceXML,” Proc of ICSLP 2002Denver (CO), Williams J. D., Witt S., M., 2004. “A Comparisori Dialog
September 2002. Strategies for Call Routing.”International Journal of
Chu-Carroll, J., Carpenter B., 1999. “Vector-baseatural Speech Technolodyol 7, No 1). January 2004, pp 9-24
language call routing,”Computational Linguistics Xu, W. Rudnicky, A. 2000 “Language modeling for I
v.25,n.3, p.361-388, September 1999 system?” Proceedings of ICSLP 2000 (Beijing, China)

Paper B1-06

