
6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

Where do we go from here?
Research and commercial spoken dialog systems.

Roberto Pieraccini

Juan Huerta

IBM T.J.Watson Research Center
1101 Kitchawan Road, Route 134

Yorktown Heights, NY 10598

Abstract

The spoken dialog industry has reached a ma-
turity characterized by a vertical structure of
technology vendors, platform integrators, ap-
plication developers, and hosting companies.
At the same time industrial standards are per-
vading the underlying technology and provid-
ing higher and higher levels of
interoperability. On one hand commercial dia-
log systems are largely based on a pragmatic
approach which aims at usability and task
completion. On the other hand, spoken dialog
research has been moving on a parallel path
trying to attain naturalness and freedom of
communication. However, the evolution of the
commercial path shows that naturalness and
freedom of expression are not necessarily a
prerequisite for usability, given the constraints
of the current technology. The difference be-
tween the two goals has been influencing a
parallel evolution of the architectures and in
particular of the dialog management abstrac-
tions. We believe it is the time to get a high
level perspective on both lines of work, and
aim to a synergistic convergence.

1 Introduction

There are different lines of research in the field of spo-
ken dialog. Some researchers attempt at understanding,
and possibly replicating, the mechanisms of human
dialog through linguistically motivated studies on hu-
man-human corpora. Others are interested in general
design principles that, once applied, would result in
usable human-machine user interfaces based on speech
recognition and speech synthesis technology. Then,
there is spoken dialog system engineering (McTear,
2004), which aims at developing programming styles,
models, engines and tools which can be used to build

effective dialog applications. The three lines of research
are, in a way, orthogonal and complementary. The fo-
cus of the first is on understanding human communica-
tion, the second on designing the interface for usable
machines, and the third on building those usable ma-
chines. The topic of this paper is concerned with the
latter, namely the engineering of spoken dialog sys-
tems. However, every discussion on the engineering of
dialog systems would be flawed if we did not take into
consideration both the nature of human-human dia-
log—as this is the most efficient realization of spoken
dialog available in nature—and the goal of usability.

The goal of usability—i.e. building machines that are
usable by untrained users—is often confused with that
of building human-like conversational systems. This is
based on the underlying tacit assumption that a machine
that approximate human behavior—from the linguistic
point of view—is certainly more usable that one that
does not. Although possibly true in the limit, this as-
sumption is often misleading, especially if we consider
that the performance of spoken language technology1
today is still far from near-human performance. How-
ever, most of the research during the past decade was
directed towards unconstrained natural language inter-
actions, based on the assumption that naturalness and
freedom of expression are the essential goals to pursue,
and usability would automatically follow from having
reached those goals.

The limitation of current spoken language technology is
a fact we have to live with. Thus, if we undertake the
goal of building usable systems given that limitation,
we would find that, for a large number of useful appli-
cations, naturalness and freedom of expression may
actually hinder usability (Oviatt, 1995; Williams and
Witt, 2004). For instance, let’s consider spoken lan-

1 With the term spoken language technology we refer to

all the technologies that attempt the replication of human
spoken language skills by machines, including speech rec-
ognition, spoken language understanding and translation,
speech synthesis and text to speech.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

guage understanding technology. In spite of the ad-
vances of the past decade, even in well defined do-
mains, unrestricted understanding of speech is still far
to be on a par with humans. So, any spoken language
system that encourages free and natural user interac-
tions is bound to a non-insignificant level of under-
standing errors. Moreover, as of today, there are no
viable error recovery dialog strategies2 available for
unconstrained natural language interactions. Con-
versely, there are several types of transactional applica-
tions that achieve high usability with interactions that
are not natural and free. After all some call centers
adopt scripts to be followed by their customer service
representatives (CSR) which do not leave much free-
dom to callers3. Most of the applications in this cate-
gory are characterized by a domain model that is well
understood by the user population. For instance, the
model for ordering pizzas is known to most of the us-
ers: a number of pies of a certain size (small, medium,
or large) with a selection of toppings (mushroom, pep-
peroni, etc.) The same applies to flight status domain
model: flights can be on time, late, or cancelled. They
arrive and depart daily from airports which serve one or
more cities and can be identified by a number or by
their itinerary and time. Banking, stock trading, pre-
scription ordering, and many other services belong to
the same category.

Generally, when the domain model is quite simple and
known by the users, as in the above cases, applications
can be implemented in a structured dialog fashion, gen-
erally referred to as directed dialog. Directed dialog,
even if seemingly more restrictive from the point of
view of the user, can attain much higher usability and
task completion rates that free form interaction does
with the current technology. In fact, when users are
prompted to provide specific pieces of information, the
system can activate grammars designed to collect ex-
actly that information. Moreover, as discussed in
(Oviatt, 1995), user guidance reduces user disfluencies.
Thus, the combination of user direction, strict gram-
mars, and less disfluencies can attain quite high speech
recognition rates. On the other hand, a more open in-
teraction would increase the space of possible user ex-
pressions at each turn, thus causing a reduction of the
recognition accuracy. Furthermore, without direct guid-

2 One of the problems arising when trying to implement

error recovery in unconstrained speech is the automatic de-
tection of recognition errors. In fact, today’s speech recog-
nition confidence measures are still highly unreliable,
especially when one attempts to apply them to portions of an
utterance. Without viable error correction, interaction with
machines may be extremely frustrating for the user.

3 As a matter of fact, human-human flight reservation
generally follows a precise script that is dictated by the order
of the entries in the CSR database.

ance, most users will be lost and would know neither
what to say, nor what the capabilities and limitations of
the system are.

The concept that well structured directed dialog strate-
gies may outperform natural language free-form inter-
actions was realized by speech technology vendors
during the early and mid 1990s. The development of a
spoken dialog market during those years led to the rise,
in the late 90’s, of a well structured industry of speech
engines, platforms, and tool vendors, application devel-
opers, and hosting companies, together with an in-
creased attention to the industrial standards. Several
standards are today governing the speech industry, such
as VoiceXML 2.04, MRCP5, SRGS6, SSML7, CCML8,
and EMMA9. The speech and the Web world started to
merge, and the benefits of this standardization trend
took a momentum amplified by the simultaneous emer-
gence of Web standards (e.g. J2EE, JSP, etc.).

It is interesting to notice that the research community
has often started from dialog approaches based on gen-
eral principles (e.g. Grice, 1975) that once coded give
machines a reasonable behavior for reacting to different
dialog situations. Then, in order to cope with the limi-
tations of the technology, research started falling back
to more restrictive dialog strategies. In contrast, the
commercial community started from a pragmatic ap-
proach, where each interaction is practically designed
in the minimal details by voice user interface (VUI)
experts (Barnard et al, 1999). After mastering the craft-
ing of directed dialog applications, the commercial
community is moving now towards more free form
types of interactions. One example of that is with re-
spect to those types of applications where directed dia-
log cannot be applied. Applications of this type are
characterized by a domain model which is complex and

4 http://www.w3.org/TR/voicexml20/
5 Media Resource Control Protocol: a protocol for the

low level control of conversational resources like speech
recognition and speech synthesis engines--
http://www.ietf.org/internet-drafts/draft-shanmugham-mrcp-
06.txt.

6 Speech Recognition Grammar Specification: a lan-
guage for the specification of context-free grammars with
semantic attachments-- http://www.w3.org/TR/speech-
grammar/.

7 Speech Synthesis Markup Language: a language for
the specification of synthetic speech--
http://www.w3.org/TR/2004/REC-speech-synthesis-
20040907/.

8 Call Control Markup Language: a language for the
control of the computer-telephony layer--
http://www.w3.org/TR/ccxml/.

9 Extensible Multi Modal Annotation: a language for the
representation of semantic input in speech and multi-modal
systems-- http://www.w3.org/TR/emma/.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

unknown to the majority of users. Help desk applica-
tions, for instance, fall in this class. For example, a di-
rected dialog system for routing callers to the
appropriate computer support may prompt user with: Is
your problem related to hardware, software, or net-
working? But users, most likely, would not know which
of the three categories would apply. A solution would
be providing a menu that includes all possible prob-
lems, but it would be too large to enumerate, and build-
ing a grammar that captures all the possible expressions
that can be used to describe all the possible problems is
impractical. In other words, the underlying domain
model is largely unknown or vague at best with respect
to users. The solution to this problem consists in letting
callers express themselves freely, and back the system
with a statistical classifier able to assign user utterances
to one of the predefined categories. This technique,
known as How May I Help You (Gorin et al., 1997),
statistical call routing, or statistical natural language
understanding (Chu-Carroll and Carpenter., 1999; Goel
et al., 2005) is just a simplified form of language under-
standing which combines the robustness of a structured
approach (a limited number of categories, or routes)
with the flexibility of natural language (an open prompt
leading to a large number of possible user expressions).
In fact, the dialog can still be structured in a directed
dialog manner, because the output of the interaction is
going to be one of a predefined number of categories.

2 VUI Completeness

The need for a detailed control of the VUI is thus an
important factor driving the architectural and engineer-
ing choices in commercial dialog systems. We call this
the VUI-completeness principle: the behavior of an ap-
plication needs to be completely specified with respect
to every possible situation that may arise during the
interaction. No unpredictable user input should ever
lead to unforeseeable behavior. Only two outcomes are
acceptable, the user task is completed, or a fallback
strategy is activated (e.g. escape to operator or an ex-
plicit failure statement is expressed).

In order to ensure that an application is VUI-complete,
its behavior needs to be specified for each possible
situation, or class of situations. Today, a complete VUI
specification is standard procedure in commercial de-
ployments and it is generally represented by a graph
that describes all the possible dialog states, comple-
mented by tables that describe al the details of each
state. Transitions between dialog states are described
with conditions based on the user inputs and other
pieces of information (e.g. previous user inputs,
backend response, personal user information, etc.). The
precise wording of system prompts is also specified in
the design, along with an indication of the type of utter-

ances accepted at each turn. The VUI specification
document is then handed to a team of developers who
subsequently implement the application using the plat-
form of choice. In order to reduce development costs, it
is thus important to guarantee a direct mapping between
the formalisms and abstractions used by the VUI de-
signers and the programming model available to the
developer. This is the reason why, most of commercial
dialog managers, follow the same abstraction utilized in
the VUI specification.

2.1 Control and Expressiveness

In order to allow developers to implement detailed VUI
specifications, the programming paradigm adopted by
the dialog manager or authoring tools should allow a
fine control of the system behavior. However, a too
low-level development paradigm my result in prohibi-
tive development costs for large and complex applica-
tions. Hence the programming paradigm needs also to
be expressive enough to allow implementing complex
behavior in a simple and cost effective way. These two
features are often competing, since in order to guaran-
tee more expressiveness the dialog manager has to al-
low for sophisticated built-in behavior, which may be
hard to bypass if one wants to attain a detailed control
of the interface. An effective dialog manager is thus the
result of a trade-off between control and expressive-
ness. This can be summarized by the following princi-
ple: simple things should be easy, complex things
should be possible.

3 Dialog Management

The design of a proper dialog management mechanism
is thus at the core of dialog system engineering. The
study of better dialog managers and proper dialog engi-
neering is a way to aim to the reduction of application
development costs. But it is also a way to move to
more sophisticated human machine interactions, since it
is only with proper engineering of dialog systems that
we can raise the complexity threshold that separates
what is realizable from what is not.

There is not an agreed upon definition of what a dialog
manager is; different systems described in the literature
attribute different functions to it. Some of these func-
tions are, for instance: integrating new user input, re-
solving ambiguities, confirming and clarifying the
current interpretation, managing contextual informa-
tion, communicating with the backend, managing
speech recognition grammars, generating system out-
puts, etc. In fact, the minimal functionality required by
a dialog manager covers two fundamental aspects of all
interactive applications: keeping track of session states
and deciding what the next action for the system to take
is. Of course there are many ways of coding these two

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

functions in order to achieve a desired interactive be-
havior.

4 Reference Architectures

In order to describe different approaches to dialog man-
agement, it is important first to define, at a high level,
the architecture of spoken dialog systems.

Figure 1 shows a general functional architecture of a
dialog system, mostly used in research prototypes. In-
put speech is collected via a telephone10 interface and
dispatched to the speech recognition engine which pro-
vides one or more recognition results (for instance the -
n-best recognition results). Each recognition result is
then fed to a natural language understanding processor

which extracts the semantics of the utterance. A formal
representation of the semantics, generally a structured
set of attribute-value pairs, is then passed on to the dia-
log manager. The dialog manager, based on the current
utterance semantics, and on the stored contextual infor-
mation derived from previous turns, decides the next
action to take according to a dialog strategy. The most
obvious action performed by the system as a response to
a user utterance is a system utterance, or prompt, which
can be generated as text and transformed into speech by
a text-to-speech engine, or selected from a set of pre-
recoded samples11. Other types of action performed by
the dialog manager include interactions with the
backend system, or any other type of processing re-
quired by the application.

10 We refer here to telephone-based systems. However,

the concepts expressed in this paper can be generalized to
other types of system that do not make use of telephone
communication, such as embedded systems for mobile de-
vices and for automobiles.

11 High quality prompts are today obtained by splicing
pre-recorded phrases with TTS generated content, using
concatenative speech synthesis.

The above described architecture has been implemented
in many different forms in research. Of particular inter-
est is the Galaxy architecture (Seneff et al., 1999) which
was used in the DARPA Communicator12 project and
allowed interchange of modules and plug-and-play
across different research groups.

One thing to notice in the above described architecture
is that the specific language models used by the speech
recognition and natural language understanding engines
are supposed to be constant throughout a whole session.
In fact, one of the basic assumptions behind most re-
search prototypes is that the system should be able to
understand all the possible expressions defined by the
language model at any point during the interaction.
However it is clear that there is a correlation between
the distribution of possible utterances and the dialog
state or context. Thus in order to improve system per-
formance, the dialog manager can change the parame-
ters of the language model and language understanding
depending on the current dialog context. Several sys-
tems did implement this feedback loop with resulting
improved performance (Xu and Rudniky, 2000).

Commercial system architectures evolved in a different
way. The basic assumption on which most of the com-
mercial deployed systems were based, and still are, is
that properly designed prompts can effectively control
the space of user expressions. If that’s true, at each turn,
there is no need for the system to be able to understand
all the possible expressions that users could say. Users
are in fact directed (thus the term directed dialog) and
enticed into speaking exactly what the system expects.
It is clear how this assumption, if true, can potentially
allow the attainment of very high task completion rates.
Under this assumption, commercial dialog systems pro-
vide the speech recognizer with an appropriately de-
signed grammar at each turn of the interaction. Each
grammar—typically a SRGS standard context-free
grammar with semantic attachments—is specifically
designed to accept the utterances that are expected to be
possible user reactions to the specific prompt played at
that particular turn. So, instead of a generic prompt like
Hello, this is XYZ flight status information line, how can
I help you today? commercial dialog system designers
use more specific prompts such as Are you interested in
arrivals or departures? or From which city is the flight
departing?

The benefit of using restricted grammars in directed
dialog applications becomes evident when looking at
the error control logic typically adopted by commercial
systems. In fact, even with very restricted grammars,
there is always a chance for the recognizer to produce

12 http://communicator.sourceforge.net/

SPEECH
RECOGNITION

ENGINE

NATURAL
LANGUAGE

UNDERSTANDING

TEXT
TO

SPEECH

T
E

LE
P

H
O

N
Y

DIALOG
MANAGER

Text

Pre-recorded prompts

control

B
A

C
K

E
N

D

Figure 1: Functional architecture of a dialog system
mostly used in research prototypes.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

erroneous interpretations, or for the user to speak utter-
ances outside the domain. Thus in case of poor recogni-
tion scores, commercial dialog systems direct users to
correct a presumably erroneous interpretation by using
very strict prompts, such as: I think you said Austin, is
that correct? Please say yes or no. And since the system
cannot afford to confuse a yes with a no at this point in
dialog (misrecognitions in correction sub-dialogs would
lead to enormous user frustration), the grammar after
this prompt is restricted to yes/no utterances and a rea-
sonable number of synonyms

Early commercial dialog systems were built using pro-
prietary architectures based on IVR (Interactive Voice
Response) platforms. Soon, the speech application de-
velopment community realized the importance of indus-
trial standards and started to create recommendations to
guarantee interoperability of platforms and engines.
After the introduction of VoiceXML 1.0 in year 2000,
conversational systems started to conform to a general
Web architecture, such as the one shown in Figure 2.
The convergence of speech and Web technologies (the
so called Voice Web) has allowed the speech industry to
leverage existing Web skills and resources, and reduce
the need for specialized developers.

The core of commercial dialog systems exemplified by
Figure 2 is the voice browser which accepts documents
written in a markup language specific for speech appli-
cations, such as VoiceXML. The voice browser ex-
changes information with a Web server using the
internet protocol (IP) in analogy with the browser and
server in traditional visual Web applications.
VoiceXML markup documents instruct the browser to
activate the speech resources (speech recognition, TTS,
prompt player, etc.) with a specific set of parameters,
such as a particular grammar for the speech recognition
engine, a prompt to be synthesized by the text-to-speech
system, or an audio recording to be played. Once user’s
speech has been recognized, and the recognition results
returned to the browser in the form of a structured set of
variables, the browser sends them back to the to Web
server, together with the request of another VoiceXML

document. The Web server then replies by sending the
requested document to the browser, and the interaction
continues in this fashion.

Using plain vanilla VoiceXML, the dialog manager
function is actually distributed across the various
VoiceXML documents. In fact each document includes
instructions for the browser to request the next docu-
ment once the current one has been executed. All the
VoiceXML documents and the corresponding resources
(such as grammars, prompts, etc.) are typically stored
statically on the Web server and served13 to the browser
upon request. However, as it happened in the visual
Web world, developers found the mechanism of encod-
ing the whole system in static VoiceXML pages quite
limiting, and soon they started to write programs on the
server for generating dynamic VoiceXML documents.
In this case the application is actually managed by a
program running on the application server, which acts
as a dialog manager. The introduction of the J2EE/JSP
technology makes this process straightforward and in
line with mainstream Web programming.

Generating VoiceXML dynamically on the server has
the advantage of providing the developer with more
powerful computational capabilities than those available
on the voice browser client, and thus accommodating in
a more flexible way the dynamic nature of sophisticated
interactions and business logic. Moreover, there are
security restrictions on the client that may prevent direct
access to external resources, such as backend databases.
The evolution of server based programming of applica-
tions brought the separation of the dialog management
functionality from the presentation (i.e. the activation of
speech engines, playing of the prompts, etc.), and the
realization of general purpose dialog managers and pro-
gramming models for developing speech applications on
the server.

In spite of the different architectural evolution of re-
search and commercial dialog systems, the need for a
powerful dialog manager is felt by both communities. In
the next few sections we will discuss some of the avail-
able models of dialog manager which have been intro-
duced in recent years.

5 Programmatic Dialog Management

The simplest form of dialog manager is a generic pro-
gram implemented in C++ or Java (or as a Java servlet
in the case of Web based architectures) implementing

13 Voice browsers use caching strategies similar to those

used by visual Web browser. So, large grammars may be
cached on the client and thus avoid large resource provision-
ing latency.

VOICE
BROWSER

CLIENT

SPEECH
RECOGNITION

ENGINE

TEXT
TO

SPEECH

SPEECH RESOURCES

T
E

LE
P

H
O

N
Y

APPLICATION
SERVER

B
A

C
K

E
N

D

INTERNET

Figure 2. Typical architecture of commercial dialog sys-
tem.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

the application without an underlying generic interac-
tion model. Early commercial dialog applications were
typically developed on the deployment platform as na-
tive code following a given VUI specification. Before
the advent of VoiceXML and the Web programming
paradigm for voice applications, IVR vendors inte-
grated speech recognition engines directly in their plat-
forms which had proprietary programming
environments or proprietary APIs14.

However, building each application from scratch be-
comes soon an inefficient and repetitive activity. Like
in all areas of software development, vendors tried to
reduce the cost of application development by introduc-
ing libraries of reusable functions and interaction tem-
plates, often for internal consumption, but also as
products that could be licensed to third parties. Librar-
ies were also complemented by programming frame-
works, generally in the form of sample code or
templates, which could be reused and adapted to differ-
ent applications.

Dialog modules, developed by various speech recogni-
tion and tool providers, constitute one of the first forms
of commercial reusable dialog functions. Dialog mod-
ules encapsulate all the low level activities required to
collect one or more pieces of information from the user.
That includes prompting, re-prompting in case of rejec-
tion and timeout, confirmation, disambiguation, etc.
The collection procedure, including prompts, gram-
mars, and logic for standard pieces of information, such
as dates, times, social security number, credit card
numbers, currency, etc., was thus encoded once and for
all in pieces of reusable and configurable software.
Developers could also build their own custom dialog
modules. Thus dialog modules became, for many, the
standard approach to directed dialog. Applications were
then implemented with the programming model avail-
able for the chosen platform. Each state of the dialog
flow was associated to a specific dialog module, and
the programming model of the platform was the glue
used to implement the whole dialog

6 Finite State Control Management

Finite state control dialog manager is an improvement
on the programmatic dialog manager. The finite state
control dialog manager implements a separation be-
tween the logic of directed dialog and its actual specifi-

14 Some platforms used GUI application development

environments that were originally designed for touch-tone
(DTMF) applications, and then extended for handling
speech recognition and TTS. Others allowed access to the
functionality of the IVR and the speech recognition/TTS en-
gines through a published proprietary API, that could be
used in C, Java, Visual Basic, etc.,

cation. The logic is implemented by a finite state ma-
chine engine which is application independent and thus
reusable. Thus, rather than coding their own finite state
machine mechanism, developers had to a description of
the finite state machine topology in terms of a graph of
nodes and arcs. Often the topology could be derived
from the VUI specification. Then developers had to
complement that with a set of custom functions re-
quired by the application. Without a separation between
the finite state machine mechanism and its topology,
the implementation of the dialog state machine logic
was often left to the programming skills of developers,
often resulting in an unmanageable spaghetti-like nest
of if-else or case statements, with increased debugging
and maintenance costs, and made it impossible to build
applications above a certain level of complexity.

One of the obvious advantages of the finite state control
management approach is that the topology of the finite
state machine is generally easier to write, debug, and
maintain than the finite state machine mechanism itself.
Moreover, the finite state machine engine can allow for
hierarchical and modular dialog definition (e.g. dialogs
and sub-dialogs). Finally, the engine itself can be har-
nessed to verify the overall topology, check for obvious
design and implementation mistakes, such as unreach-
able nodes, loops, etc., and provide debugging and log-
ging facilities. More sophisticated engines can have
built-in behavior, like for instance handling specific
navigation across dialog networks, recording usage
information for personalized services, implementing
functions such as back-up and repeat, etc. (Pieraccini et
al., 2001).

The simplest form of finite state control dialog manager
is built around the concept of call-flow developed ini-
tially for IVR systems. In its simplest realization a call
flow is a graph where the nodes represent prompts, and
the arcs represent transitions conditioned on the user
choice (e.g. Figure 3). By navigating the call flow
graph and selecting the right choices, the user can reach
the desired goal and complete the task. The call flow
model is quite limited and breaks for complex dialog
systems since one has to explicitly enumerate all the
possible choices at any node in the dialog.

In fact the pure call-flow model is inadequate to repre-
sent even modest levels of mixed initiative, such as
over-specification, i.e. more than on piece of informa-
tion in a single utterance. For instance, if asked for the
date of a flight15 in a mixed initiative system that allows
for over-specified requests, users may instead respond

15 It looks like the spoken dialog community has a pen-

chant for applications related to flights. We hope to see
other domains of interest in the future.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

with any subset of date, origin, destination, and airline.
In order to be able to handle this, the simple call flow
model would need to represent explicitly all the possi-
ble subsets of user choices (e.g. date, date + time, date
+ origin, … date + origin + destination, …) making the
design and development impractical.

However, one can easily extend the concept of call-
flow and allow the state machine to assume any topol-
ogy, to invoke any arbitrary function (action) at each
node, and assume any arbitrarily complex condition on
the arcs. Furthermore, one can allow any arbitrarily
complex data structures (session state) to be writable
and readable by the actions associated to the nodes. In
this new extended form, the finite state control dialog
manager (we will refer to it as the functional model) has
enough expressive power to represent sophisticated
directed dialog and mixed initiative interactions. A full
functional model of dialog management can also allow
for recursion, i.e. full dialogs specified in a functional
fashion can be, themselves, used as actions and associ-
ated to nodes of a higher level dialog, enabling thus
hierarchical description of applications, and promoting
modularity and reuse. An example of a control graph
that handles over-specified utterances is shown in Fig-
ure 4 (it will be explained later in this paper). More
detailed descriptions of functional models of dialog
management can be found in (Pieraccini et al, 1997;
Pieraccini et al., 2001).

There are common misconceptions about the effective
expressive and computational power of the finite state
dialog model. In fact it is often attributed limited capa-
bilities with respect to more sophisticated abstractions.
This misconception derives from the confusion between
a simple call flow model, which is completely de-
scribed by a state machine with prompts on the nodes
and choices on the arcs, and the richer functional model
described above. In its simpler form the call flow model
is indeed, computationally, a finite state model of dia-
log: i.e. the state of the dialog is univocally determined
by the node of the call flow. In contrast, the functional

model allows arbitrary functions at each node to ma-
nipulate arbitrary memory structures that can be shared
across nodes. Thus the extended functional model is
not, computationally, a finite state model of dialog; it
just makes use of a finite state representation for the
dialog control mechanism. In fact each node of the fi-
nite state machine describing the dialog control does
not represent univocally the state of the dialog, because
we need also to take in consideration the state of all the
memory structures associated with the controller (e.g.
the session state). A functional dialog manager is
equivalent to a procedural program with a fixed struc-
ture based on nested conditional or case statements.
The nodes are equivalent to function calls, while the
conditions are equivalent to the conditional statements,
and a whole dialog is analogous to the definition of a
function. However, a functional dialog manager speci-
fication is much easier to author and debug than a set of
nested conditional or case statements16.

6.1 Handling Mixed Initiative in Functional Mod-
els

A clear limitation of functional models is in that they
often require a complete topological definition of the
task that may be rather complex for certain types of
applications. For instance, the implementation of mixed
initiative interactions may result in a control graph with
a large, unmanageable number of arcs. One way to re-
duce the cost of designing and developing mixed initia-
tive dialog applications within the functional model
paradigm consists in providing the controller engine
with a behavior that corresponds to complex topologies,

16 As a proof of this, we leave to the reader the exercise

of rewriting the controller in Figure 4 as a series of nested if-
else-if-else statements.

Balance or transfer?

Which account? From account?

Provide
checking
balance

Provide
savings
balance

balance transfer

checking savings

Amount? Amount?

checking savings

savings
checking
transfer

checking
savings
transfer

Figure 3. Example of call flow.

Which flight?

Origin?

Destination? Airline?

Date?

1
!origin

!destination !airline

!date

2 3

Figure 4: Graph representing a functional dialog control-
ler implementing a FIA topology. The conditions on the
arcs exiting a node are verified in the left-to-right fashion.
Arcs without conditions are else arcs.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

without the need for the developer to specify those in
term of nodes and arcs. For example, in (Pieraccini et
al., 2001), the concept of state transition was extended
to include special GOTO and GOSUB arcs to easily
implement topic changes and digressions at any node of
the dialog. Powerful engines for functional dialog mod-
els can also allow for effective authoring of global tran-
sitions that apply to whole sets of nodes.

6.2 Fixed Topology Models

One can implement functional dialog managers that
allow the developer to specify the control graph topol-
ogy (Carpenter et al., 2002). On the other hand one
could restrict the control graph to assume a fixed topol-
ogy and allow developers to specify only a limited
number of parameters.

The Form Interpretation Algorithm (FIA), the basis for
the VoiceXML standard, is an example of a functional
model of dialog management with a fixed topology.
The topology of the FIA controller is in fact shown by
the example in Figure 4. The FIA topology is particu-
larly suited for handling over-specified requests, allow-
ing filling forms with multiple-field forms in any order.
For instance, if after the initial question Which flight?
the user specifies the destination and the airline, the arc
!origin is traversed and the node origin? is exe-
cuted next. As a result the user is asked to provide the
origin of the flight. Then, the date? node is executed,
next, since the condition !date is true. After the user
has provided all the required pieces of information (ori-
gin, destination, airline, and date) the sub-dialog exits
through node 3.

Another example of functional model with a fixed to-
pology controller is the MIT dialog management sys-
tem (Seneff and Polifroni, 2000). In this case the
control is defined by a sequence of functions that are
activated when the conditions associated to them fire.
Each function can modify a session state (i.e. a frame
memory structure) by adding additional information,
including a flag which instructs the controller on what
to do next. Possible flags are: CONTINUE, causing the
execution of the next rule in the sequence, RETURN,
causing the controller to return to the initial rule, or
STOP the execution. Again, as in the VoiceXML case,
developing a dialog does not require the description of
the control graph, which has the functional form de-
scribed by Figure 5, but the specification of the func-
tions associated to the nodes, and the conditions. The
following is an example of a set of rules that implement
the same sub-dialog as the one in Figure 4.

!origin � prompt_origin()
!destination � prompt_destination()

!airline � prompt_airline()
!date � prompt_date()

7 Inference Based Dialog Managers

We have shown in the previous section how several
forms of dialog manager can be reduced to a unique
underlying model: the functional finite-state dialog
controller. The difference between them is in whether
developers are allowed to change the topology of the
controller, and in the type of authoring (e.g. graph or
rules). However, there are classes of applications for
which a specification through a finite state controller
may result impractical. As we discussed earlier, trans-
actional applications with a well defined goal (e.g. giv-
ing information to the user, selling or buying, etc.) can
often be effectively implemented with a finite state
controller. On the contrary, applications of the problem
solving type (Allen et al., 2000) require a higher degree
of planning, for which the finite state controller can be
quite inappropriate. These types of applications, as of
today, have not yet found a channel to the market of
spoken dialog systems, partially because they are not
yet at a level to demonstrate commercially viability. In
fact their deployment still requires specialized devel-
opment teams and is thus quite expensive. Moreover
the performance of the resulting systems is not yet at
the level required for a commercial exploitation.

In spite of its difficulty, the research community has
been actively pushing the technology towards the solu-
tion of the dialog management problem for complex
systems, especially under the auspices of the DARPA
Communicator program. Successful prototypes have
been demonstrated and tested based on sophisticated
dialog managers that deviate from the finite-state con-

function_1()

1

function_2()

2

condition_1

3

condition_2

RETURN

RETURN

CONTINUE

CONTINUE

4

STOP

STOP

Figure 5. Functional control graph representing a rule
based system.

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

troller model, and include some degrees of inference. A
distinguishing feature of the inference based systems is
that they refrain from to attempting at a more or less
explicit description of the relationship between states
and actions, as in the finite state controllers, but rather
resort to engines that draw decisions on the next action
to perform based on a general strategy and on a formal
description of the domain, typically in terms of goals
and sub-goals. Thus, in order to develop an applica-
tion, one starts from a formal description of the domain
model in such a way to allow the inference engine to
drive the system to a cooperative solution.

In (Stallard, 2001) the dialog control model is described
by a tree representing the goal/sub-goal structure, with
the leaves of the tree being the actions. Actions, which
include conditions for their execution, are associated to
individual goals. Internal nodes represent conditional
controls on the execution of the underlying nodes. A
dialog manager based on task ontology and a hierarchy
of nodes is described in (Pellom et al., 2000). The dia-
log manager described in (Wei and Rudnicky, 2000)
constructs a dynamic structure, called agenda, which is
practically a list of sub-goals, where each sub-goal cor-
responds to the collection of some piece of information.
A task is completed when all the items in the agenda
are completed. The agenda is created, dynamically, by
traversing a tree (i.e. the product tree) that describes the
task to accomplish at any point in time. The product
tree is dynamically created since the nature of the task
may be dynamic as well (e.g. the number of legs in a
flight is determined during the interaction and not
known beforehand). In the form based dialog manager
described in (Papineni, 1999) the inference mechanism
is driven by a numerical function computed on a set of
partially completed forms (i.e. sets of task-relevant
slots), based on how close each individual hypothesized
form is to the goal (i.e. the retrieval of information from
the database)17.

Another line of research is based on statistical learning
of the dialog strategy using mathematical models de-
rived from statistical machine learning, such as Markov
Decision Process (Levin, 2000) or Bayesian network
frameworks (Meng, 2003). It is still too early to be able
to understand whether automated design of dialog can
allow building usable systems whit a quality compara-
ble to that of those designed by VUI expert designers.

It is not yet clear whether any of the sophisticated in-
ference dialog managers developed in research could be

17 A commercial version of this dialog manager was im-

plemented by IBM and used in a financial application
(T.Rowe Price).

effectively used for mass production of commercial
systems. One of the problem is that their behavior is
quite complex, and it may be difficult to predict all pos-
sible situations that could arise during the interaction.
Thus VUI completeness may be hard to achieve. Re-
search prototypes, so far, have been built by researchers
with an intimate knowledge of the quirks of the dialog
manager itself. Thus, in order to succeed in the com-
mercial arena, inference engines have to produce sys-
tems with usability comparable or superior to that of an
equivalent directed dialog for the same task, or provide
services (e.g. problem solving applications) that cannot
be provided with directed dialog, still with usability as
the main goal. VUI completeness is an essential re-
quirement which should be seriously taken into proper
consideration for the more sophisticated dialog man-
ager models.

8 Current Industrial Trends

Reusable components (Huerta et al, 2005) and prepack-
aged applications are the main trends of the industry of
spoken dialog systems today. Componentization and
reuse effectively allow reducing deployment costs and
risks and, at the same time, simplifying the design and
development of more sophisticated applications. Thus
the commercial world is approaching the creation of
more complex applications through more and more so-
phisticated building blocks which allow reuse and inter-
play.

9 Conclusions

The way applications are authored, what capabilities
the systems have, and the overall usability that is even-
tually perceived by users reflect the different goals that
research and industry have in the field of spoken dialog
systems. Whereas usability and cost effectiveness are
the primary goals of the commercial community, re-
search has traditionally aimed at naturalness of interac-
tions and freedom of expression. However, often the
latter does not necessarily lead to the former. The actual
form assumed by dialog managers in both communities
is the consequence of those different goals. In fact, in
order to achieve high usability, commercial deploy-
ments aim at having completely definable interfaces
(control and VUI completeness), using efficient lan-
guages and architectures (expressiveness and simple-
things-should-be-easy) while keeping the ability to
achieve complex levels of interaction (complex-things-
should-be-possible). At the same time, the focus of
research is towards abstracting, validating and achiev-
ing complex levels of natural interaction. While at first
glance both sets of goals might seem in conflict, we
believe that an evolution towards more complex level
of interaction while using an effective development

6th SIGdial workshop on Discourse and Dialog, Lisbon, Portugal, 2-3 September, 2005

framework and implementing a “controllable” (VUI
complete) interface is possible.

We have shown that most commercial dialog manage-
ment abstractions fall into the functional finite-state
controller mechanism, as well as some of the dialog
managers developed in research. The difference is in
the constraints applied to the topology of the controller
and in the type of authoring (graphs vs. rules). We have
also shown that there is a second category of dialog
managers, inference based, which is devoted to handle
more complex interactions, such as problem solving
applications. VUI-completeness is required for them to
become viable and reach the level of usability needed
to succeed in the commercial arena.

We believe that the authoring of applications should be
aligned with the model used at design time, and possi-
bly to the runtime environment. In this way efficiency
can be achieved at all levels: design, development, and
deployment. The framework should allow for the en-
capsulation of dialog mechanisms into templates, com-
ponents, and subroutines that abstract behaviors.
Beyond allowing for a reduction of development costs,
this is also the first step towards the implementation of
more complex interaction mechanisms. Finally, the
framework should have strict “directed” and thus con-
trollable default behavior, but at the same time should
allow for more complex interactions to be triggered if
and when these dialog mechanisms would benefit the
interaction (e.g., power users).

We believe that a consolidation of the goal priorities
(i.e. usability and naturalness of interaction) between
research and the commercial world will foster further
maturation of the technology. For this to happen,
though, the dialog needs to start.

References

Allen, J. F., Ferguson, G., Stent, A., 2000. Dialog systems:
From theory to practice in TRAINS-96. in Dale R., Moisl
H., Somers H. eds., Handbook of Natural Language Proc-
essing. Marcel Dekker, New York, 347-376.

Barnard, E., Halberstadt, A., Kotelly, C., Phillips, M., 1999
“A Consistent Approach To Designing Spoken-dialog
Systems,” Proc. of ASRU99 – IEEE Workshop, Keystone,
Colorado, Dec. 1999.

Carpenter, B., Caskey, S, Dayanidhi, K., Drouin, C., Pierac-
cini, R., 2002. “A Portable, Server-Side Dialog Frame-
work for VoiceXML,” Proc of ICSLP 2002, Denver (CO),
September 2002.

Chu-Carroll, J., Carpenter B., 1999. “Vector-based natural
language call routing,” Computational Linguistics,
v.25, n.3, p.361-388, September 1999

Goel, V., Kuo, H.-K., Deligne, S., Wu S., 2005 “Language
Model Estimation for Optimizing End-to-end Performance
of a Natural Language Call Routing System,” ICASSP
2005

Gorin, A. L., Riccardi, G.,Wright, J. H., 1997 Speech Com-
munication, vol. 23, pp. 113-127, 1997.

Grice, H. P., 1975. “Logic and Conversation,” in Cole P. and
Morgan J. L., eds, Speech Acts, New York, Academic
Press, 41-58.

Huerta, J., Akolkar, R., Faruquie, T., Kankar, P., Rajput, Ra-
man, T. V., Udupa, R., Verma, A., 2005., “Reusable Dia-
log Component Framework for Rapid Voice Application
Development,” 8th International SIGSOFT Symposium
on Component-based Software Engineering (CBSE 2005)

Levin, E., Pieraccini, R., Eckert, W., 2000. “A Stochastic
Model of Human-Machine Interaction for Learning Dialog
Strategies,” IEEE Trans. on Speech and Audio Process-
ing, Vol. 8, No. 1, pp. 11-23, January 2000

McTear M., 2004. “Spoken Language Technology,” Springer,
2004.

Meng, H.M., Wai, C., Pieraccini, R., “The Use of Belief Net-
works for Mixed-Initiative Dialog Modeling,” IEEE
Transactions on Speech and Audio Processing, Vol. 11, N.
6, pp. 757-773, November 2003.

Oviatt, S. L., 1995. “Predicting spoken disfluencies during
human-computer interaction.” Computer Speech and Lan-
guage, 1995, 9:19--35.

Papineni, K., Roukos, S., Ward, R., 1999. “Free-flow Dialog
Management Using Forms, “ Proc. of Eurospeech, 1999

Pellom, B., Ward, W., Pradhan, S., 2000. “The CU Communi-
cator: an Architecture for Dialog Systems,” ICSLP 2000.

Pieraccini, R., Levin, E. and Eckert, W., 1997. “AMICA: the
AT&T Mixed Initiative Conversational Architecture,”
Proc. of Eurospeech 97, Rhodes, Greece, Sept. 1997.

Pieraccini, R., Caskey, S., Dayanidhi, K., Carpenter, B., Phil-
lips, M., 2001. “ETUDE, a Recursive Dialog Manager
with Embedded User Interface Patterns,” Proc. of ASRU01
– IEEE Workshop, Madonna di Campiglio, Italy, Dec.
2001.

Seneff, S., Lau, R., Polifroni, J, 1999. “Organization, Com-
munication, And Control In The Galaxy-Ii Conversational
System, “ Eurospeech 1999.

Seneff S., and Polifroni, J., 2000. "Dialogue management in
the MERCURY flight reservation system," in Satellite
Dialogue Workshop, ANLP-NAACL, Seattle, April, 2000.

Stallard, D., 2001. “Dialogue Management in the Talk’n
Travel System,“ Proc. of ASRU01 – IEEE Workshop,
Madonna di Campiglio, Italy, Dec. 2001.

Wei, X., Rudnicky, A., 2000. “Task-based management using
an agenda,” ANLP/NAACL 2000

Williams J. D., Witt S., M., 2004. “A Comparison of Dialog
Strategies for Call Routing.” International Journal of
Speech Technology (Vol 7, No 1). January 2004, pp 9-24

Xu, W. Rudnicky, A. 2000 “Language modeling for dialog
system?” Proceedings of ICSLP 2000 (Beijing, China).
Paper B1-06

