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ABSTRACT corpus utterances classes

This paper compares six classification algorithms for stati | Gorin at al. [3] (1997) 10,000 15

tical semantic analysis in the framework of a dialog system| Carroll and Carpenter [4] (1999) 3,753 23

for automated troubleshooting. The comparison is carnigd o | Kuo and Lee [5] (2000) 4,000 23

on large datasets, each consisting of over 100,000 uttesanc | Tur etal. [6] (2003) 21,953 49

(or 500,000 words) from two domains: Televison (TV) and | Goel atal. [7] (2005) 33274 | 35
Internet (INT). In spite of the high number of classes (79 for | TV 100,202 | 79

TV and 58 for INT), the best classifier (maximum entropy on | INT 137,570 | 58

word bigrams) achieved more than 77% classification accu- ) o

racy on the TV dataset and 81% on the INT dataset. Table 1. Comparison of corpora used in literature on call

- classification and those used in the current study.
Index Terms— call classification, automated trouble shoot-

ing, large corpora

have a hardware, software, or configuration problem?

1. INTRODUCTION they may respond unexpectediyl CD-ROM does not

work!), ask for help or an operator, etc.
State-of-the-art dialog systems for automated troubletiho ) -
ing feature a very high complexity involving hundreds oleal In the_ I_ate 90s, Gorin et al. [3] proposed thg use of a stadisti
system interactions and human-agent-like problem soléag classifier to overcome these challenges. It is based on an ope
haviour [1]. Due to the large variety of call reasons such Syspro_mpt, allowing the callers to freely de_scrlbe the problem
tems are able to handle, the identification of the call reasoff /il own words. For the (,:urrent experiments, the uttemnce
becomes an important issue. So far, most automated tro@'€ @ll taken from callers’ responses to the pronfpiease
bleshooting solutions have used either dual-tone mtidiency 9€SCribe the problem you're having in one short sentence
signaling [2] or directed dialogs for call classification.i- D For training, a large number of utterances were collected
rected dialogs are driven by multiple choice questions fifchv from the two troubleshooting domains: Television (TV) and
the user is prompted to respond with one from a small set dnternet (INT). The utterances were collected from custome

responses. However, a directed dialog is not practicahfer t SUPPOrt calls to an automated dialog system. They were man-
task at hand for several reasons ually transcribed and classified into one of several distinc

call reasons that are acted upon by the dialog system, such
e The number of call reasons, in the following referred t0as ChannelMissingor TV or CantLoginPasswordEmafbr

asclassesis much too large to be handled in a single |NT (for the corpus statistics, refer to Section 2.
directed dialog. Due to short-term memory limitations,  compared to previous studies reported in the literature,
it would be impossible to ask the caller to choose onéyth the amount of training data and the number of classes
out of 79 distinct choices. Even a hierarchically struc-j, the current study are substantially larger. Table 1 shows
tured directed dialog would prove unwieldy with such 54 preakdown for corpora used in other similar systems and
a large number of classes. those presented in this study (TV and INT).

words, which might not be covered by the rule-basedsPonding class are then used to train a statistical modétfwh

alogs. likely class for a new caller utterance. This paper compares

) . six algorithms for call classification:
e Callers may not understand the terms used in a directed

dialog. For example in response to the pronipd: you e ndve Bayes,
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bag of words matching + inze Bayes, this, over 50% of the utterances in a frequently occurring TV

B ) class are instances of the same type. For such cases that have
e nave Bayes + boosting, been seen in the training data, the simplest classifier would
construct a rule mapping the test utterance to the class pro-
vided for the identical training utterance. We refer to thés

decision trees,

e balanced winnow, matching The existence of a large amount of annotated train-
ing data makes this approach viable for at least part of the
e maximum entropy. corpus.

. . . . . . In order to reduce redundant information and enable the

These algorithms are briefly discussed in Section 2. Then, in_ .
: o . classifier to match a larger percentage of the test uttesance
Section 3, the corpora used in this study and the experirhenta . .
. . we transformed utterance into their bag-of-word represent
framework are described, and detailed results of the eXPerL 1y verforming the following steps:
ments are reported. Section 4 discusses the outcomes taking yp 9 g steps:

the specifics of corpora and algorithms into account. e Stop words were removed according to a list including
38 function words.

2. OVERVIEW OF CLASSIFIERS . .
e The remaining words were stemmed using the Porter

This section provides a brief overview of the classificatibn stemmer algorithm [9].
gorithms that were compared. The first two methods (bag-of-
words matching and Nee Bayes) were implemented by the
authors. The next three were selected because they weee thre 4 The order of the words was regu|arized by an a|phabetic
top performing classifiers from Mallet, a Java-based machin sort.

learning package tailored to natural language proces8ing [
Finally, we implemented a boosting algorithm on several o
the classifiers.

e Multiple occurances of words were eliminated.

f2.3. Ndve Bayes

The goal of the Nave Bayes classifier is to provide the most
2.1. Data Representation likely class label¢, from a set of class label§;, given an ut-

N terance expressed by the word sequenfe:= wy, ..., wy
For all of the classifiers (except for the bag-of-word match-

ing), each utterance was represented as a feature vector in o= argmaxp(c‘w{v). 1)
which there was one feature for each lexical type (distinct ceC

word) in the dataset for the given domain. The values of the Using Bayes' Rule, this can be rewritten as:
features are the token counts for each word that is present in

the output of the ASR engine deployed in the automated sys- . p(wlN|e)P(c)
tem. If a type is not represented, then the feature value is 0. ¢= argen(ljax PlwM) (2)
c 1

Since most utterances only contain a single instance of any
type, this method often results in binary-valued feature- ve Since the termp(wi") remanis constant, it can be removed
tors. Furthermore, the feature vectors are sparse, since, from Equation 2. Finally, the classifier uses thesBayes
average, there are only about five types with non-zero countonditional independence assumption to deternilte?) |c).
out of a feature vector with more than 4,000 components repFhis assumes that the probability of the utterance giveasscl
resenting the corpus vocabulary (see Table 2 for the corpus simply the product of the probabilities of each word in the
characteristics). utterance given the class yielding

As experience from other natural language processing tasks
like language modeling suggests, not only the presence or )
pure counts of word should be taken into account, but also c= arpggéaXp(c) H p(wylc). (3)
contextual information. Therefore, we also included ward b ) n=l
grams and trigrams as features. This increased the number of Both the prior probabilityp(c), and the conditional prob-

N

features as reported in Table 2. ability p(w|c) were estimated by using the maximum likeli-
hood estimate based on the training data. Laplacian smooth-
2.2. Bag-of-Word Matching ing with a floor value of 0.1 was applied.

As mentioned above, most of the utterances in the dataset € Balanced Winnow

quite short, with an average of 5.1 words per utterance. Fur-

thermore, due to the nature of the troubleshooting taskymarBalanced Winnow is an online, mistake-driven learning algo
of the utterances recur frequently. As an extreme example afthm [10], [11]. The classifier proceeds by taking the dot
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product of the feature vectar for test utterance and a weight 2.6. C4.5

vectorw for each class: . . o -
“ C4.5is adecision tree classifier [19]. The classifier comssr

6 — Aremax T - w ) a branching tree consisting of a set of features to test and th
N Cgec “ most likely class given the decision. The feature to test at
each node is determined by calculating the maximum infor-

If ¢ is incorrect, the weight vector for the correct class_ . . . . : ) .
. D ; mation gain over all possible splits. The information gain f
is updated by multiplying each component corresponding tQ

a non-zero feature in the feature vector by a constante, splltt|_ng gt a feature is defined as the dlfferencg n entaipy

: . . the distribution before the splff (D) and the weighted sum
and the weight vector for the incorrect class by- ¢, with of the entropies of the nodes after the split (for a split teet
0 < e < 1. This procedure is conducted for multiple itera- P P P

tions over the training data. K possible outcomes):

K
D
2.5. Maximum Entropy IG=H(D)-Y_ ||Dk| x H(Dy,) 7)
k=1
The maximum entropy paradigm [12] expresses the probabil-
ity p(c|w?) introduced in Equation 1 by applying the follow-
ing multiplicative decomposition

In order to make the classifier training computationally
tractable, feature selection was conducted first on thesetta
The maximum number of features, which the algorithm could

TT (clwn) handle in a reasonable amount of time (about 24 hours on a 3
(clwl) = n " GHz Intel Xeon processor and 2 GB of memory) on the full
preftn) = Yo ITa(d|wy) dataset was determined to be 50. Two methods of feature se-
¢ n lection were usedy? and TFIDF [20]. Both produced similar
I N (@) (¢lw) results; those reported below usgtifor feature selection for
_ _w C4.5.
> TNt (clw)
2.7. Boosting
exp | £ N(w)logaclu)] e
_ w .G Boosting is an on-line learning algorithm in which the reésul

of several classifiersyeak learnersare combined, as a func-
tion of each classifier's accuracy, to form a weighted major-
ity prediction rule. The boosting algorithm used in the cur-
Performing theargmax operation of Equation 1 ignoring the rent experiments is AdaBoost.M2 (also implemented in Mal-
terms which are constant with respectigields let), which is specificaly designed for multiclass classtiion
tasks. The boosted classifier's decision is determined &y th

S oxp | £ ¥ w) logalclu)]

5 N
¢ = arggaxl’(dwl ) equation (see [21] for details):
= argmax » N(w)loga(clw). T 1
ceC %: ¢ = argmax Z(log —Vhy(z,c) (8)

(6) ceC 13 ﬂt

This expression includes the variables:

This expression includes the variables o . )
e t=1,2,...,T,around of boosting in which the weight

e N(w), which is the count of a word type in the ut- vector over the weak learner is updated as a function of
terance. The general principle of maximum entropy, each weak learner’s accuracy
however, allows for arbitrary (binary, integer, or real-

valued) features to be used instead of the raw word ° A, a variable determined by the pseudo-loss of the hy-

count. In this paper’s investigations, we used both word pothesis
counts and bigram counts as features. e hy, a hypothesis from the weak learner in the form of
. . a vectorX x C'— > [0, 1] with a confidence score for
o a(c|w) with a(cjw) > 0andY> a(clw) = 1, which are S ach class. [0,1]

parameters depending on t?]e clasmd the particular

wordw. These parameters are estimated in training us- 3. EXPERIMENTS

ing algorithms like generalized iterative scaling [13] or

the Broyden-Fletcher-Goldfarb-Shanno [14, 15, 16, 17]n this section, we describe the characteristics of the-auto
method, the latter being used in this study as it was obmatic troubleshooting corpora and report on the experiatent
served to be more efficient [18]. results of the classifier comparison.
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LA Ll
training utterances 91,746 | 125,665 1
test utterances 8,456 | 11,905 7
classes 79 58 < 0.9+ ‘><f—\—:.¥\
Lo Q
:;/aetruarii \é\iords per utterance 5.1 4.4 208 Sy
grams) 4,125 4,475 5
features (1+2grams) 40,176| 70,469 = 0.7 -
ASR word error rate 31.0 32.7 g
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Fig. 2. Macroaveraged’ measure as a function of total cov-
erage by the classes until that point.

=
o
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1 10 100 3.2. Results
Category Rank

Tests were conducted on the datasets in Table 2 using all of
the classification methods described in Section 2. Addifion
tests were conducted on smaller subsets of the TV corpus in
order to see how the performance for each classifier changes
with increased training data.

3.1. Corpora The accuracy is measured by overall percentage of cor-
rect classifications out of all test utterances. In gendinal,
erformance per class is better for the classes that arer bett
epresented in the datasets, as would be expected. Theslass
that have extremely poor performance only make up a small
part of the dataset, as is shown in Figure 2 for the boosted
Naive Bayes classifier. This figure plots the measure [22]
The partitions were constucted such that the per-class digs defined by
tribution in each partition reflects the distribution in tber-
pus as a whole, i.e. if a class contains 2% of the overall-utter F = 2 - precision - recall )
ances, then it will also contain 2% of the training and 2% of precision + recall
the test utterances. This was done to ensure that none of the
classes would be omitted from the test set by a purely randof@r each class, ordered by decreasing frequency. zFaris
sampling (some of the least frequent classes in the TV datas@isplays the percentage of utterances in the corpus that are
contain fewer than 0.05% of the overall utterances). covered by the classes until that point. Thexis displays
the macroaverageH; measure for those classes. For exam-

This method of splitting the dataset was compared Withy e ‘the two most frequent classes in the TV corpus comprise

a 10-fold cross validation on the INT dataset using a purel)26.6% of the entire corpus, and they have an averagef
random 90 / 10 split for each iteration. The average perforolgg' '

mance of the 10 rounds was identical to the performance on
the single dataset with the balanced 90/ 10 split (77.3%} th
demonstrating that this method of partitioning the datallyar
influences the results.

Fig. 1. Frequency distribution of the classes.

The classification tests were conducted on a 90 / 10 split
each corpus into training and testing partitions. Tabledwsh
the number of utterances in the training and test partitions
the full data sets.

Figure 3 displays how the performance of the six classi-
fiers improves with increased amounts of training data. The
sizes of the training sets are approximately 1000, 20000500
10000, 20000, 50000, 100000 (the exact numbers differtgligh
Figure 1 shows how the utterances count per class sortetlie to the fact that per-class distributions were preségrvdt

by descending counts. The distribution is nearly Zipfian, exof these tests were performed on the test set of the TV corpus
cept for the fact that the most infrequent classes are tasslya as specified in Table 2. Table 3 shows the results for the TV
represented. and INT corpora using the full train and test sets.
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[%0] TV [ INT
percentage of BOW seen in training 63.2 | 73.7
BOW accuracy on BOW data 88.3| 85.1
maximum entropy accuracy on BOW date88.6 | 89.0

—-e—BalancedWinnow —=—C45
—— Naive Bayes

—— MaxEnt —— Boosted Naive Baye‘s

g Table 4. Results of bag-of-word matching compared to max-
Ej imum entropy.
Ko,
5 TV INT
g utterances 100,202| 137,570
bags of word 39,057 | 37,197
60 w ambiguous bags of word 1,023 724
1000 10000 100000
Training Utterances Table 5. Corpus statistics on bags of words with ambiguous
classes.
Fig. 3. Classification accuracy on the TV corpus as a function
of amount of training data for the compared classifiers. bags of word and potentially wrong classes.
In spite of the large amount of training data used in this
Classifier TV | INT ‘ study, there are more than 30% of the test utterances, whose
Naive Bayes 699 72.7 bag-of-word representation has not been seen in the teainin
BOW + Naive Bayes | 74.1 | 75.5 data. Consequently, for this part of the data, anotheritilass
c45 73.5| 78.7 cation algorithm has to be applied; in this paper, we decided
Boosted Nave Bayes| 74.9 | 77.3 to use the Nive Bayes classifier, described in Section 2.3, as
Balanced Winnow 74.11 79.6 update solution, since both algorithms can be integrated ve
Maximum Entropy | 77.2 | 81.2 easily.

The bag-of-word paradigm is based on the assumption
Table 3. Comparison of the classification accuracy on fullthat there is a non-ambiguous mapping from a given bag of
training set for TV and INT corpora. BOW stands for bag-of-word to a single class. In order to test this assumption, the
word matching. training utterances of the corpora were collapsed into béags

word and those cases were isolated, which mapped to more

than one class. Table 5 reports about the outcomes of this

4. DISCUSSION test.
These non-ambiguous cases could be due to a weakness

As the main outcome of the experiments reported in Figure 3 the pag-of-word approach, which assumes that only redun-
and Table 3, the performance of the maximum entropy clasjancy is removed. Therefore, all these cases were given to a
sifier stands out. It consistently outperformed the competinyman annotator for review. At the date of this publication,
tors in all our experiments including all sets of corpora andpis review process is still in progress, but a the numbet-of a
n-gram order. This result agrees with experience from othefeady finished cases suggest that the vast majority of them is
classification tasks in natural language processing SUEXBs  qye to inconsistent annotations. Only very few cases, where
categorization [23], part-of-speech tagging [24], or ndm®- o ytterances belonging to different classes but regltin

tity recognition [25]. . identical bags of words have been found. One example in-
Let us now compare the winner to our two personal fa~olved the following two utterances from different classes
vorites: bag of words matching and boosting. “cancel a call” @ppointment and “calling to cancel” $er-

viceCancé). Both of these utterances were compressed to the
Bag of Word Matching. As pointed out earlier, bag of words bag of words “call cancel”, and thus the bag-of-word classi-
matching does not cover all of the utterances, necesgtatirfier is not able to correctly distinguish them.
the use of a back-up classifier. Table 4 shows the percent- |nterestingly, it turns out that the maximum entropy clas-
ages of test utterances, whose bag-of-words represemtatigifier outperformed bag of words matching even on the set
has been seen in training. It also reports the classifiatten aof utterances whose bags of word have been seen in train-
curacy of the bag-of-words matching limited to the casen seeing, as shown in Table 4. Maximum entropy obviously fea-

in training. tures superior characteristics concerning data incarsigts
Unfortunately, the bag-of-word matching accuracy doesand recognition errors. It also takes context into accoast:
not achieve 100% for the following drawbacks mentioned in Section 2.1, we ran experiments expanding un-

Speech recognition errors (cf. Table 2) lead to erroneougyrams to bigrams and trigrams extending the number of fea-

IEEE ASRU 2007 Workshop. Kyoto, Japan, Dec. 9-13, 2007



tures used for the classification. Table 6 shows results on TV [4]
data. This time, also a corpus variant comprising 50,000 ut-
terances was used, since the test framework suffered memory®!
problems when applying trigrams to the full 100,000 tragnin ]
utterances.

Enhancing unigrams by bigrams pushs the performance
by 0.3 to 0.4%. Further extending thegram order does not
seem to show a significant effect. At any rate, it seems that
context, and consequently word order, plays a certain iiste d
tinguishing between classes.

(7]

(8]

Boosting. Attempts were made to improve the classifier per- g
formance through boosting. [26] demonstrates that bogstin
improves the performance of a C4.5 classifier on a wide vari-{10]
ety of datasets, and [27] shows improved performance specif
ically for text categorization.

In our experiments, however, boosting only showed im-
proved performance on the complete datasets with i@eNa |4,
Bayes classifier. The best results were obtained with 550
rounds of boosting, and are reported in Figure 3.

For the other classifiers, boosting showed no improve-[13]
ment, often even a slight decrease in performance when the
entire training set was used. For smaller datasets, akielas
fiers did show some improvement with boosting. But when
the training corpus is large and the classifier is strong ghpu
our results suggest that boosting is not helpful.

(11]

(14]

(15]

[16]
5. CONCLUSION

[17]
This paper reported on call classification experiments mela
corpora comparing six classification algorithms. Most re- [18]
markable outcome is that the maximum entropy approach out-
performed all other classifiers on all data sets. Furthesmor [19]
it turned out that boosting does not help on the investigated[zo]
large data sets for all classifiers except foiivaBayes.

[21]
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