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Abstract

We present a set of metrics describing classi-
fication performance for individual contexts
of a spoken dialog system as well as for the
entire system. We show how these metrics
can be used to train and tune system com-
ponents and how they are related to Caller
Experience, a subjective measure describing
how well a caller was treated by the dialog
system.

1 Introduction

Most of the speech recognition contexts in commer-
cial spoken dialog systems aim at mapping the caller
input to one out of a set of context-specific seman-
tic classes (Knight et al., 2001). This is done by
providing agrammarto the speech recognizer at a
given recognition context. A grammar serves two
purposes:

• It constraints the lexical content the recognizer
is able to recognize in this context (the lan-
guage model) and

• It assigns one out of a set of possible classes to
the recognition hypothesis (the classifier).

This basic concept is independent of the nature of
a grammar: it can be a rule-based one, manually
or automatically generated; it can comprise a sta-
tistical language model and a classifier; it can con-
sist of sets of grammars, language models, or classi-
fiers; or it can be a holistic grammar, i.e., a statistical
model combining a language model and a classifica-
tion model in one large search tree.

Most commercial dialog systems utilize gram-
mars that return a semantic parse in one of these
contexts:

• directed dialogs (e.g., yes/no contexts, menus
with several choices, collection of information
out of a restricted set [Which type of modem do
you have?]—usually, less than 50 classes)

• open-ended prompts (e.g. for call routing, prob-
lem capture; likewise to collect information
out of a restricted set [Tell me what you are
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calling about today]—possibly several hundred
classes (Gorin et al., 1997; Boye and Wiren,
2007))

• information collection out of a huge (or infi-
nite) set of classes (e.g., collection of phone
numbers, dates, names, etc.)

When the performance of spoken dialog systems
is to be measured, there is a multitude of objective
metrics to do so, many of which feature major dis-
advantages. Examples include

• Completion rate is calculated as the number of
completed calls divided by the total number of
calls. The main disadvantage of this metric is
that it is influenced by many factors out of the
system’s control, such as caller hang-ups, opt-
outs, or call reasons that fall out of the system’s
scope. Furthermore, there are several system
characteristics that impact this metric, such as
recognition performance, dialog design, tech-
nical stability, availability of back-end integra-
tion, etc. As experience shows, all of these
factors can have unpredictable influence on the
completion rate. On the one hand, a simple
wording change in the introduction prompt of
a system can make this rate improve signifi-
cantly, whereas, on the other hand, major im-
provement of the open-ended speech recogni-
tion grammar following this very prompt may
not have any impact.

• Average holding time is a common term for
the average call duration. This metric is of-
ten considered to be quite controversial since
it is unclear whether longer calls are preferred
or dispreferred. Consider the following two in-
congruous behaviors resulting in longer call du-
ration:

– The system fails to appropriately treat
callers, asking too many questions, per-
forming redundant operations, acting un-
intelligently because of missing back-end
integration, or letting the caller wait in
never-ending wait music loops.

– The system is so well-designed that it en-
gages callers to interact with the system
longer.
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• Hang-up and opt-out rates. These metrics
try to encapsulate how many callers choose not
to use the dialog system, either because they
hang up or because they request to speak with
a human operator. However, it is unclear how
such events are related to dialog system per-
formance. Certainly, many callers may have
a prejudice against speaking with automated
systems and may hang up or request a human
regardless of how well-performing the dialog
system is with cooperative users. Furthermore,
callers who hang up may do so because they
are unable to get their problem solved or they
may hang up precisely because their problem
was solved (instead of waiting for the more fe-
licitous post-problem-solving dialog modules).

• Retry rate is calculated as the average num-
ber of times that the system has to re-prompt
for caller input because the caller’s previous ut-
terance was determined to be Out-of-Grammar.
The intuition behind this metric is that the
lower the retry rate, the better the system. How-
ever, this metric is problematic because it is
tied to grammar performance itself. Consider
a well-performing grammar that correctly ac-
cepts In-Grammar utterances and rejects Out-
of-Grammar utterances. This grammar will
cause the system to produce retries for all Out-
of-Grammar utterances. Consider a poorly de-
signed grammar that accepts everything (incor-
rectly), even background noise. This grammar
would decrease the retry rate but would not be
indicative of a well-performing dialog system.

As opposed to these objective measures, there is
a subjective measure directly related to the system
performance as perceived by the user:

• Caller Experience. This metric is used to de-
scribe how well the caller is treated by the sys-
tem according to its design. Caller Experience
is measured on a scale between 1 (bad) and 5
(excellent). This is the only subjective mea-
sure in this list and is usually estimated based
on averaging scores given by multiple voice
user interface experts which listen to multiple
full calls. Although this metric directly repre-
sents the ultimate design goal for spoken dialog
systems—i.e., to achieve highest possible user
experience—it is very expensive to be repeat-
edly produced and not suitable to be generated
on-the-fly.

Our former research has suggested, however,
that it may be possible to automatically esti-
mate Caller Experience based on several ob-
jective measures (Evanini et al., 2008). These
measures include the overall number of no-
matches and substitutions in a call, operator
requests, hang-ups, non-heard speech, the fact

whether the call reason could be successfully
captured and whether the call reason was fi-
nally satisfied. Initial experiments showed a
near-human accuracy of the automatic predic-
tor trained on several hundred calls with avail-
able manual Caller Experience scores. The
most powerful objective metric turned out to be
the overall number of no-matches and substitu-
tions, indicating a high correlation between the
latter and Caller Experience.

No-matches and substitutions are objective metrics
defined in the scope of semantic classification of
caller utterances. They are part of a larger set of
semantic classification metrics which we systemati-
cally demonstrate in Section 2. The remainder of the
paper examines three case studies exploring the use-
fulness and interplay of different evaluation metrics,
including:

• the correlation between True Total (one of the
introduced metrics) and Caller Experience in
Section 3,

• the estimation of speech recognition and clas-
sification parameters based on True Total and
True Confirm Total (another metric) in Sec-
tion 4, and

• the tuning of large-scale spoken dialog systems
to maximize True Total and its effect on Caller
Experience in Section 5.

2 Metrics for Utterance Classification

Acoustic events processed by spoken dialog sys-
tems are usually split into two main categories: In-
Grammar and Out-of-Grammar. In-Grammar utter-
ances are all those that belong to one of the semantic
classes processable by the system logic in the given
context. Out-of-Grammar utterances comprise all
remaining events, such as utterances whose mean-
ings are not handled by the grammar or when the
input is non-speech noise.

Spoken dialog systems usually respond to acous-
tic events after being processed by the grammar in
one of three ways:

• The event getsrejected. This is when the sys-
tem either assumes that the event was Out-of-
Grammar, or it is so uncertain about its (In-
Grammar) finding that it rejects the utterance.
Most often, the callers get re-prompted for their
input.

• The event getsaccepted. This is when the sys-
tem is certain to have correctly detected an In-
Grammar semantic class.



Table 1:Event Acronyms

I In-Grammar
O Out-of-Grammar
A Accept
R Reject
C Correct
W Wrong
Y Confirm
N Not-Confirm
TA True Accept
FA False Accept
TR True Reject
FR False Reject
TAC True Accept Correct
TAW True Accept Wrong
FRC False Reject Correct
FRW False Reject Wrong
FAC False Accept Confirm
FAA False Accept Accept
TACC True Accept Correct Confirm
TACA True Accept Correct Accept
TAWC True Accept Wrong Confirm
TAWA True Accept Wrong Accept
TT True Total
TCT True Confirm Total

• The event getsconfirmed. This is when the sys-
tem assumes to have correctly detected an In-
Grammar class but still is not absolutely cer-
tain about it. Consequently, the caller is asked
to verify the class. Historically, confirma-
tions are not used in many contexts where they
would sound confusing or distracting, for in-
stance in yes/no contexts (“I am sorry. Did you
say NO?”—“ No!”—“ This was NO, yes?”—
“No!!!”).

Based on these categories, an acoustic event and
how the system responds to it can be described by
four binary questions:

1. Is the event In-Grammar?

2. Is the event accepted?

3. Is the event correctly classified?

4. Is the event confirmed?

Now, we can draw a diagram containing the first two
questions as in Table 2. See Table 1 for all acoustic
event classification types used in the remainder of
this paper.

Table 2:In-Grammar? Accepted?

A R
I TA FR
O FA TR

Table 3:In-Grammar? Accepted? Correct?

A R
C W C W

I TAC TAW FRC FRW
O FA TR

Extending the diagram to include the third ques-
tion is only applicable to In-Grammar events since
Out-of-Grammar is a single class and, therefore, can
only be either falsely accepted or correctly rejected
as shown in Table 3.

Further extending the diagram to accomodate the
fourth question on whether a recognized class was
confirmed is similarly only applicable if an event
was accepted, as rejections are never confirmed; see
Table 4. Table 5 gives one example for each of the
above introduced events for a yes/no grammar.

When the performance of a given recognition con-
text is to be measured, one can collect a certain num-
ber of utterances recorded in this context, look at
the recognition and application logs to see whether
these utterances where accepted or confirmed and
which class they were assigned to, transcribe and
annotate the utterances for their semantic class and
finally count the events and divide them by the total
number of utterances. If X is an event from the list in
Table 1, we want to refer tox as this average score,
e.g.,tac is the fraction of total events correctly ac-
cepted. One characteristic of these scores is that they
sum up to 1 for each of the Diagrams 2 to 4 as for
example

a + r = 1, (1)

i + o = 1, (2)

ta + fr + fa + tr = 1. (3)

In order to enable system tuning and to report sys-
tem performance at-a-glance, the multitude of met-
rics must be consolidated into a single powerful met-
ric. In the industry, one often uses weights to com-
bine metrics since they are assumed to have different
importance. For instance, a False Accept is consid-
ered worse than a False Reject since the latter allows
for correction in the first retry whereas the former
may lead the caller down the wrong path. However,
these weights are heavily negotiable and depend on
customer, application, and even the recognition con-
text, making it impossible to produce a comprehen-
sive and widely applicable consolidated metric. This



Table 5:Examples for utterance classification metrics.This table shows the transcription of an utterance,
the semantic class it maps to (if In-Grammar), a binary flag for whether the utterance is In-Grammar, the
recognized class (i.e. the grammar output), a flag for whether the recognized class was accepted, a flag for
whether the recognized class was correct (i.e. matched the transcription’s semantic class), a flag for whether
the recognized class was confirmed, and the acronym of the type of event the respective combination results
in.

utterance class In-Grammar? rec. class accepted? correct? confirmed? event
yeah YES 1 I
what 0 O

NO 1 A
NO 0 R

no no no NO 1 NO 1 C
yes ma’am YES 1 NO 0 W

1 Y
0 N

i said no NO 1 YES 1 TA
oh my god 0 NO 1 FA
i can’t tell 0 NO 0 TR
yes always YES 1 YES 0 FR
yes i guess so YES 1 YES 1 1 TAC
no i don’t think so NO 1 YES 1 0 TAW
definitely yes YES 1 YES 0 1 FRC
no man NO 1 YES 0 0 FRW
sunshine 0 YES 1 1 FAC
choices 0 NO 1 0 FAA
right YES 1 YES 1 1 1 TACC
yup YES 1 YES 1 1 0 TACA
this is true YES 1 NO 1 0 1 TAWC
no nothing NO 1 YES 1 0 0 TAWA

Table 4: In-Grammar? Accepted? Correct? Con-
firmed?

A R
C W C W

Y TACC TAWC
I

N TACA TAWA
FRC FRW

Y FAC
O

N FAA
TR

is why we propose to split the set of metrics into
two groups: good and bad. The sought-for consoli-
dated metric is the sum of all good metrics (hence,
an overall accuracy) or, alternatively, the sum of all
bad events (overall error rate). In Tables 3 and 4,
good metrics are highlighted. Accordingly, we de-

fine two consolidated metricsTrue Totaland True
Confirm Totalas follows:

tt = tac + tr, (4)

tct = taca + tawc + fac + tr. (5)

In the aforementioned special case that a recognition
context never confirms, Equation 5 equals Equa-
tion 4 since the confirmation termstawc and fac
disappear.

The following sections report on three case stud-
ies on the applicability of True Total and True Con-
firm Total to the tuning of spoken dialog systems and
how they relate to Caller Experience.

3 On the Correlation between True Total
and Caller Experience

As motivated in Section 1, initial experiments on
predicting Caller Experience based on objective



Table 6: Pearson correlation coefficient for several
utterance classification metrics on the source data.

A R
C W

I 0.394 -0.160 ......-0.230......
O -0.242 -0.155

r(TT) = 0.378

metrics indicated that there is a considerable corre-
lation between Caller Experience and semantic clas-
sification metrics such as those introduced in Sec-
tion 2. In the first of our case studies, this effect is to
be deeper analyzed and quantified. For this purpose,
we selected 446 calls from four different spoken dia-
log systems of the customer service hotlines of three
major cable service providers. The spoken dialog
systems comprised

• a call routing application—cf. (Suendermann et
al., 2008),

• a cable TV troubleshooting application,

• a broadband Internet troubleshooting applica-
tion, and

• a Voice-over-IP troubleshooting application—
see for instance (Acomb et al., 2007).

The calls were evaluated by voice user interface
experts and Caller Experience was rated according
to the scale introduced in Section 1. Furthermore,
all speech recognition utterances (4480) were tran-
scribed and annotated with their semantic classes.
Thereafter, all utterance classification metrics intro-
duced in Section 2 were computed for every call
individually by averaging across all utterances of
a call. Finally, we applied the Pearson correlation
coefficient (Rodgers and Nicewander, 1988) to the
source data points to correlate the Caller Experience
score of a single call to the metrics of the same call.
This was done in Table 6.

Looking at these numbers, whose magnitude is
rather low, one may be suspect of the findings. E.g.,
|r(FR)| > |r(TAW)| suggesting that False Reject
has a more negative impact on Caller Experience
than True Accept Wrong (akaSubstitution) which is
against common experience. Reasons for the messi-
ness of the results are that

• Caller Experience is subjective and affected by
inter- and intra-expert inconsistency. E.g., in a
consistency cross-validation test, we observed
identical calls rated by one subject as 1 and by
another as 5.

Figure 1: Dependency between Caller Experience
and True Total.

• Caller Experience scores are discrete, and,
hence, can vary by±1, even in case of strong
consistency.

• Although utterance classification metrics are
(almost) objective metrics measuring the per-
centage of how often certain events happen in
average, this average generated for individual
calls may not be very meaningful. For instance,
a very brief call with a single yes/no utterance
correctly classified results in the same True To-
tal score like a series of 50 correct recognitions
in a 20-minutes conversation. While the lat-
ter is virtually impossible, the former happens
rather often and dominates the picture.

• The sample size of the experiment conducted in
the present case study (446 calls) is perhaps too
small for deep analyses on events rarely hap-
pening in the investigated calls.

Trying to overcome these problems, we com-
puted all utterance classification metrics introduced
in Section 2, grouping and averaging them for the
five distinct values of Caller Experience. As an ex-
ample, we show the almost linear graph expressing
the relationship between True Total and Caller Expe-
rience in Figure 1. Applying the Pearson correlation
coefficient to this five-point curve yieldsr = 0.972
confirming that what we see is pretty much a straight
line. Comparing this value to the coefficients pro-
duced by the individual metrics TAC, TAW, FR, FA,
and TR as done in Table 7, shows that no other line
is as straight as the one produced by True Total sup-
posing its maximization to produce spoken dialog
systems with highest level of user experience.



Table 7: Pearson correlation coefficient for several
utterance classification metrics after grouping and
averaging.

A R
C W

I 0.969 -0.917 ......-0.539......
O -0.953 -0.939

r(TT) = 0.972

4 Estimating Speech Parameters by
Maximizing True Total or True Confirm
Total

The previous section tried to shed some light on the
relationship between some of the utterance classifi-
cation metrics and Caller Experience. We saw that,
on average, increasing Caller Experience comes
with increasing True Total as the almost linear curve
of Figure 1 supposes. As a consequence, much of
our effort was dedicated to maximizing True Total in
diverse scenarios. Speech recognition as well as se-
mantic classification with all their components (such
as acoustic, language, and classification models) and
parameters (such as acoustic and semantic rejection
and confirmation confidence thresholds, time-outs,
etc.) was set up and tuned to produce highest possi-
ble scores. This section gives two examples of how
parameter settings influence True Total.

4.1 Acoustic Confirmation Threshold

When a speech recognizer produces a hypothesis of
what has been said, it also returns an acoustic confi-
dence score which the application can utilize to de-
cide whether to reject the utterance, confirm it, or ac-
cept it right away. The setting of these thresholds has
obviously a large impact on Caller Experience since
the application is to reject as few valid utterances as
possible, not confirm every single input, but, at the
same time, not falsely accept wrong hypotheses. It
is also known that these settings can strongly vary
from context to context. E.g., in announcements,
where no caller input is expected, but, nonetheless
utterances like ‘agent’ or ‘help’ are supposed to be
recognized, rejection must be used much more ag-
gressively than in collection contexts. True Total or
True Confirm Total are suitable measures to detect
the optimum tradeoff. Figure 2 shows the True Con-
firm Total graph for a collection context with 30 dis-
tinguishable classes. At a confidence value of 0.12,
there is a local and global maximum indicating the
optimum setting for the confirmation threshold for
this grammar context.

Figure 2: Tuning the acoustic confirmation thresh-
old.

4.2 Maximum Speech Time-Out

This parameter influences the maximum time the
speech recognizer keeps recognizing once speech
has started until it gives up and discards the recog-
nition hypothesis. Maximum speech time-out is pri-
marily used to limit processor load on speech recog-
nition servers and avoid situations in which line
noise and other long-lasting events keep the recog-
nizer busy for an unnecessarily long time. As it
anecdotally happened to callers that they were inter-
rupted by the dialog system, on the one hand, some
voice user interface designers tend to chose rather
large values for this time-out setting, e.g., 15 or 20
seconds. On the other hand, very long speech input
tends to produce more likely a classification error
than shorter ones. Might there be a setting which
is optimum from the utterance classification point of
view?

To investigate this behavior, we took 115,885
transcribed and annotated utterances collected in the

Figure 3: Dependency between utterance duration
and True Total.



Figure 4: Dependency between maximum speech
time-out and True Total.

main collection context of a call routing applica-
tion and aligned them to their utterance durations.
Then, we ordered the utterances in descending order
of their duration, grouped always 1000 successive
utterances together, and averaged over duration and
True Total. This generated 116 data points showing
the relationship between the duration of an utterance
and its expected True Total, see Figure 3.

The figure shows a clear maximum somewhere
around 2.5 seconds and then descends with increas-
ing duration towards zero. Utterances with a dura-
tion of 9 seconds exhibited a very low True Total
score (20%). Furthermore, it would appear that one
should never allow utterances to exceed four second
in this context. However, upon further evaluation of
the situation, we also have to consider that long ut-
terances occur much less frequently than short ones.
To integrate the frequency distribution into this anal-
ysis, we produced another graph that shows the av-
erage True Total accumulated over all utterances
shorter than a certain duration. This simulates the
effect of using a different maximum speech time-out
setting and is displayed in Figure 4. We also show
a graph on how many of the utterances would have
been interrupted in Figure 5.

The curve shows an interesting down-up-down
trajection which can be explained as follows:

• Acoustic events shorter than 1.0 seconds are
mostly noise events which are correctly identi-
fied since the speech recognizer could not even
build a search tree and returns an empty hy-
pothesis which the classifier, in turn, correctly
rejects.

• Utterances with a duration around 1.5s are
dominated by single words which cannot prop-
erly evaluated by the (trigram) language model.
So, the acoustic model takes over the main
work and, because of its imperfectness, lowers
the True Total.

Figure 5: Percentage of utterances interrupted by
maximum speech time-out.

• Utterances with a moderate number of words
are best covered by the language model, so we
achieve highest accuracy for them (≈3s).

• The longer the utterances continues after 4 sec-
onds, the less likely the language model and
classfier are to have seen such utterances, and
True Total declines.

Evaluating the case from the pure classifier per-
formance perspective, the maximum speech time-
out would have to be set to a very low value (around
3 seconds). However, at this point, about 20% of the
callers would be interrupted. The decision whether
this optimimum should be accepcted depends on
how elegantly the interruption can be designed:

“I’m so sorry to interrupt, but I’m having a
little trouble getting that. So, let’s try this
a different way.”

5 Continuous Tuning of a Spoken Dialog
System to Maximize True Total and Its
Effect on Caller Experience

In the last two sections, we investigated the correla-
tion between True Total and Caller Experience and
gave examples on how system parameters can be
tuned by maximizing True Total. The present sec-
tion gives a practical example of how rigorous im-
provement of utterance classification leads to real
improvement of Caller Experience.

The application in question is a combination of
the four systems listed in Section 3 which work in an
interconnected fashion. When callers access the ser-
vice hotline, they are first asked to briefly describe
their call reason. After up to two follow-up ques-
tions to further disambiguate their reason, they are
either connected to a human operator or one of the
three automated troubleshooting systems. Escala-
tion from one of them can connect the caller to an



Figure 6: Increase of the True Total of a large-
vocabulary grammar with more than 250 classes
over release time.

agent, transfer the caller back to the call router or to
one of the other troubleshooting systems.

When the application was launched in June 2008,
its True Total averaged 78%. During the follow-
ing three months, almost 2.2 million utterances were
collected, transcribed, and annotated for their se-
mantic classes to train statistical update grammars
in a continuously running process (Suendermann et
al., 2009). Whenever a grammar significantly out-
performed the most recent baseline, it was released
and put into production leading to an incremental
improvement of performance throughout the appli-
cation. As an example, Figure 6 shows the True To-
tal increase of the top-level large-vocabulary gram-
mar that distinguishes more than 250 classes. The
overall performance of the application went up to
more than 90% True Total within three months of its
launch.

Having witnessed a significant gain of a spoken
dialog system’s True Total, we would now like to
know to what extent this improvement manifests it-
self in an increase of Caller Experience. Figure 7
shows that, indeed, Caller Experience was strongly
positively affected. Over the same three month pe-
riod, we achieved an iterative increase from an initial
Caller Experience of 3.4 to 4.6.

6 Conclusion

Several of our investigations have suggested a con-
siderable correlation between True Total, an objec-
tive utterance classification metric, and Caller Expe-
rience, a subjective score of overall system perfor-
mance usually rated by expert listeners. This obser-
vation leads to our main conclusions:

• True Total and several of the other utterance
classification metrics introduced in this paper
can be used as input to a Caller Experience
predictor—as tentative results in (Evanini et al.,
2008) confirm.

Figure 7:Increase of Caller Experience over release
time.

• Efforts towards improvement of speech recog-
nition in spoken dialog applications should be
focused on increasing True Total since this will
directly influence Caller Experience.
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