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1.1

Abstract

In this chapter we discuss several methods for the categorisation of call ut-

terances in the framescope of automated troubleshooting agents. Automated

agents are spoken language dialog systems of the 3rd generation, oriented to

perform technical support tasks over the phone in a similar way as human

agents do. One of the issues to complete to this aim is the identification of the

problem experienced by the caller out of caller’s utterance, which is currently

addressed by statistical classificaton methods. In this chapter, two different

approaches to the categorisation of transcribed utterances are described. First,

statistical categorisers which require minimal supervision degrees, in terms of

labeled samples, are proposed. A nearest neigbour algorithm feeded with

only one labeled utterance per problem category is applied in combination

with appropriate feature extraction schemes – semantic term clustering. Sec-

ondly, different classifiers typically applied to the categorisation of text docu-

ments are compared, also for different sizes of the labeled sets. In this sense, a

vector model is compared to a probabilistic approach – the Naïve Bayes clas-

sifier. All described techniques are evaluated and tested with two different

corpora gathered from real interactions of commercial troubleshooting agents

with callers. In general terms, the main objective of the chapter is to provide

the reader an overview to the fields of pattern recognition and text classifica-

tion, whilst focusing on the practical categorisation of utterances for a modern

dialog system application – the problem solving domain.

1.2

Introduction

As a result of an accelerated technological development and especially due

to the progressive advances in the field of automated speech recognition, first
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Spoken Language Dialog Systems (SLDSs) emerged in the mid 1990s as a new,

important form of human-machine communication.

As their name suggests, SLDSs are interactive, voice-based interfaces be-

tween humans and computers, which allow humans to carry out tasks of di-

verse complexity (travel ticket reservations, bank transactions, information

search or problem solving, etc.).

The typical architecture of an SLDS [28] is depicted in Fig. 1.1. Input acous-

tic vectors generated from the speech signal are first processed by an Auto-

matic Speech Recogniser (ASR), resulting in a raw text transcription1 of the

input utterance. Subsequently, the transcribed text is interpreted in a seman-

tic analysis block which extracts the utterance meaning in form of an appro-

priate semantic structure. This semantic representation is processed by the

dialog manager which also communicates directly with an external applica-

tion, namely a database interface. The dialog manager keeps control of the

overall interaction progress towards the task completion. During this process,

the user may be queried for confirmations, disambiguations, necessary addi-

tional information, etc. Finally, the interaction result is presented to the user in

form of speech (text-to-speech synthesis or pre-recorded prompts), text, tables

or graphics.

Synthesis
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Natural

Generation

Fig. 1.1 Overview of an SLDS.

Among the SLDS modules, speech recognition and semantic analysis play a

decisive role for the global system performance [6]. In particular, this chapter

deals with the semantic analysis block, often referred to as natural language un-

derstanding. The extracted semantics from each user utterance can be viewed as

an internal knowledge representation used (by the dialog manager) to trigger

a certain action in the context of a particular task [31].

In first and second generation SLDS , frequently used in applications such

as banking and travel reservations, semantic analysis commonly relies on

the definition of semantic or case-frame grammars [4]. A semantic gramar

1) Most probable sequence of words detected
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formalism provides a model for the sentence structure in terms of seman-

tic constituents: words or phrases. The semantic analysis decodes the text of

an input utterance by extracting the correspondences between the sentence

constituents and their semantic labels. For example, in the framework of a

flight booking application, the user utterance “I would like to fly from Munich to

New York on July, 24th” may be decoded into the following semantic sequence:

<book> (airport-origin)(airport-destination)(depart-day)(depart-month).

For the grammar implementation, two major tendencies exist: in a rule-

based approach, a set of grammar rules is manually defined for a specific task

or application. Rule-based methods provide best performance for a restricted

task for which they are originally designed. However, these methods turn

out to be inflexible regarding their adaptation and portability to new appli-

cation domains. Alternatively, in data-oriented approaches, stochastic mod-

els are used, such as Hidden Markov Models [38], which automatically in-

fer the model parameters from training corpora of semantic representations.

These techniques are more flexible and portable to different domains. Exam-

ples of systems using rule-based and stocastically-based parsing principles

are the ATR translation system from Japanese to English (SL-TRANS) [33] and

the AT&T-CHRONUS (Conceptual Hidden Representation of Natural Uncon-

strained Speech) speech understanding system [27], respectively.

However, third generation SLDSs , deployed in applications dealing with

problem solving, education and entertainment, have shown higher levels of

complexity. In this chapter, we focus on the problem solving domain, in par-

ticular on automated troubleshooting agents. These agents are specially de-

signed to perform customer care issues over the telephone in a similar way as

human agents do.

Today, natural language understanding is typically performed by a speech

recognition module followed by a speech utterance classifier . Such classifiers

are a more sophisticated replacement of menu-based systems using dual-tone

multi-frequency (DTMF) [18] technology (... push 1 for billing, push 2 for sales

...) or speech-recognition-based directed dialog (... you can say billing, sales, or

...). These simple solutions are often not practical for several reasons:

• In certain applications, the number of classes can be too large to be han-

dled in a single menu. Even succession of menus hierarchically struc-

tured would prove unwieldy with hundreds of classes, not to mention

the bad caller experience when five or six menu levels are required to

reach the correct routing point.

• Even when prompted with a clear menu, callers often describe the rea-

son why they are calling in their own words, and that may not be cov-

ered by the rule-based grammar typically used with directed dialog sys-

tems.
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• For complex domains, callers may not understand or be familiar with

the terms used in the menu. For example in response to the prompt: Do

you have a hardware, software, or configuration problem?, they may respond

unexpectedly (My CD-ROM does not work!) or choose one of the options

at random without really knowing if it applies to their case.

For these reasons, state-of-the-art troubleshooting agents leave the dialog

initiative to the users by presenting an open welcome message: “please briefly

describe the reason for your call” [1]. Unconstrained, natural language user re-

sponses describing the general problem or symptom they experience are then

classified by an speech utterance classifier mapping the user utterance into

one of a set of predefined categories [14].

Supervised statistical classifiers are algorithms trained with a corpus of

transcribed utterances and their associated problem categories. The param-

eters learned in training phase are applied to predict the classes of new ut-

terances, not necessarily observed in the training corpus. A crucial factor on

which a classifier’s effectiveness depends is the size of available data for train-

ing.

However, the significant cost of hand-labelling a large amount of train-

ing data is one of the main problems associated with the use of such classi-

fiers. Achieving appropriate classification performance even with small train-

ing sets recently became focus of research in the field [5]. Besides, the set of

categories used for data-labelling is subject to alteration: It is not rare to ob-

serve situations in which the set of problems handled by the automated agents

needs to be updated. In such cases, algorithms which require only few train-

ing data can be helpful to rapidly adapt the system.

In this chapter, we first provide an overview on the utterance categorisation

model and propose different schemes which use only one labelled example

per category. With these minimal training data, considerable degradation of

the categorisation performance is expected with respect to categorisers that

make use of large labelled corpora. One main reason is that semantic vari-

ability may not be adequately captured in small labelled sets. We therefore

analyse word clustering as a mean to extract semantic relationships of words

and in consequence boost the classification effectiveness. A similar task in the

field of information retrieval is the efficient search of information in the In-

ternet. In fact, one of the first applications of word clustering is the lexical

term expansion of user queries to search engines with automatically discov-

ered synonyms of the original query terms [42].

We also provide a comparison of formulations used in text processing ap-

plication for estimating the different relevance of terms. Term scoring was

applied to the categorisation of utterances with different numbers of labelled

examples.
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The chapter organisation is as follows: an overview to general pattern

recognition and its application to the categorisation of texts is given in Sec-

tions 1.3 and 1.4. In Section 1.5 a description of the utterance corpora used in

our experiments is provided. The utterance preprocessing is explained in Sec-

tion 1.6. Details about feature extraction and term weighting are outlined in

Sections 1.7 and 1.8 respectively. Finally, we evaluate the described algorithms

in Section 1.9 and draw conclusions in Section 1.10.

1.3

An overview on pattern recognition

Pattern recognition is an important problem addressed by scientists in a num-

ber of research fields: biology, geography, engineering, computer science, ar-

tificial intelligence, etc. [20]. In pattern recognition, patterns are defined as en-

tities which can be subjected to classification. This is possible as long as their

similarity can be calculated. Examples of patterns are genes, human faces,

handwritten characters, or texts.

The classification task consists of (i) the mapping of patterns into one or

more classes out of a pre-defined category set (supervised classification or dis-

criminant analysis), or (ii) the grouping of patterns into previously unknown

classes according to their affinities (unsupervised classification or clustering).

In the latter case, the classes are also detected as a result of the classification

process. A typical pattern recognition scheme is shown in Figure 1.2.

Classification

Algorithm

Test

Patterns

Classes

Preprocessing
Feature

Extraction/

Selection

Set

Feature
Extraction/

Selection

LearningPreprocessing
Training

Learned ParametersTraining (Supervised Classification)

Fig. 1.2 Pattern recognition scheme. For supervised classification, a

training module is required.

In supervised classifiers, pattern recognition operates in two separated

modes: training and classification or test. In the case of unsupervised classifica-

tion, the learning step is absent. In addition to the modes, one distinguishes

between three phases: Preprocessing, feature selection/extraction and classi-

fication.
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Preprocessing, also known as preparation, aims at optimising the represen-

tation and quality of the input observations in order to produce reliable data

for statistical analysis [37]. This process involves operations such as segmen-

tation, normalisation and elimination of noise or irrelevant information.

A segmentation stage decomposes the input data into pieces, thereby en-

abling the multidimensional representation of patterns. In certain cases, input

objects are already presented segmented as a set of measurements captured by

an array of sensors (for example, temperature and humidity in classification

of metereological phenomena). However, in many other situations, the objects

to classify are the result of individual acquisitions. This is the case of images

in computer vision. A data segmentation may be used here to split digital im-

ages into M pixels or blocks, so that an image can be observed, for example, as

an M dimensional array of pixel intensities. The output dimensions obtained

after segmentation are also termed classification features, since they represent

different properties of the objects to classify. In consequence, patterns are also

referred to as feature vectors.

Normalisation procedures can be applied to features or patterns. Fea-

ture normalisation is specially convenient and necessary if the classification

features represent different object attributes represented in different scales.

Common feature normalisation techniques are linear scaling to unit variance,

transformation to uniform [0-1] random variables and rank normalisation,

among other methods [3]. Moreover, pattern normalisation applies to the fea-

ture values inside an individual pattern. An example is the normalisation of

image intensities for object recognition in images.

Feature selection and extraction techniques help in reducing the dimen-

sionality of feature sets. As it is broadly accepted, an optimal feature set

should capture the relevant characteristics of the data in the most compact

way.

Feature selection aims at retaining the subset of the original features that best

represents the input patterns. Typically, this process is carried out by sorting

the initial features according to their relevance and filtering out those features

which do not exceed a minimum relevance threshold. The resulting feature

vectors are thus the projections of the original patterns over the selected fea-

ture sub-space. In contrast, feature extraction performs a transformation of the

input pattern vectors into a different feature space through certain statistical

analysis of the input data. Examples of feature extraction techniques are prin-

cipal components analysis (PCA), independent component analysis (ICA) or

feature clustering [26]. The feature selection/extraction module has proven

highly important for pattern recognition. A correct scheme may not only help

reducing computational costs associated with very high dimensional data

sets, but also increase the classification effectiveness.
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Finally, the classification algorithm maps input feature vectors to output

classes. Supervised algorithms rely on the existence of training sets with la-

belled examples. The mapping is typically defined by a certain number of

parameters whose values are usually adjusted to a training data set during

the learning phase. Some examples of supervised classifiers include, among

others, the Naïve Bayes classifier, polynomial classifiers, neural networks or

support vector machines.

Unsupervised techniques are suitable when no labelled examples are avail-

able. The output classes/groups are not known a-priori, but detected during

the classification process. Hierarchical and partitioning clustering algorithms

are used to group the input patterns according to distance-based criteria. Hi-

erarchical approaches build the cluster solution gradually, resulting in cluster

hierarchy structures or dendograms. Two kind of hierarchical algorithms can be

distinguished, depending on the dendogram construction methods: aglomer-

ative (bottom up) and divisive (top down) [19,21,24]. In contrast, partitioning

approaches learn a flat cluster structure, typically through an iterative search

for the optimum of the criterion function (K-means, K-medoids, etc.) [17, 34].

More recent approaches have been developed to discover dense regions in

a dataspace. Usually, the density notion is represented by two parameters,

minpts and ε, denoting the minimum number of points to be enclosed in a

ε-radius neigbourhood of certain objects called core points (DBscan [13], Op-

tics [29], Denclue [15], Clique [2], etc.). These algorithms are resistant to out-

liers2 and more flexible than distance-based approaches, insofar clusters of

irregular shapes and sizes can be detected [43]. Further, if the set of obser-

vations can be drawn from an underlying probabilistic distribution, model-

based approaches can be applied in order to fit a probabilistic model to the in-

put patterns. A common example is the Expectation Maximisation algorithm,

used to fit a mixture of gaussians to a dataset [11].

A compromise between supervised and unsupervised techniques are semi-

supervised approaches [9]. These methods make use of both labelled and un-

labelled data for training. In co-training algorithms, two or more supervised

classifiers are applied to different subsets of the original feature set [5]. A

new training data set is generated following a confidence evaluation of the

classification results (e.g. agreement between classifiers). The main condition

for the use of co-training approaches is the statistical independence between

feature subsets used by the classifiers. Another kind of semi-supervised learn-

ing are clustering algorithms in which certain constraints about the input data

are manually defined (Clustering with constraints) [41]. The constraints spec-

2) Outliers are noise patterns which do not belong to any cluster, but
fall in the regions between two or more clusters. Outliers are often
unreliable patterns which need to be discovered and accordingly
treated.
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ify wether two data instances must or cannot be linked together in a single

cluster.

1.4

Utterance classification as a text classification problem

Since speech utterances are transcribed into text by ASR, utterance-to-symptom

categorisation is a particular case of text classification, traditionally applied to

documents. In this section, we describe how pattern recognition is applied to

text and, in particular, to utterance classification.

During preprocessing, all words in a text corpus are reduced to units of se-

mantic meaning: stems or lemmas. As a next step, an n-gram model3 can be

applied to extract and count subsequences of terms up to length n. A particu-

lar case is the uni-gram model where only single words are extracted, ignoring

any possible order in which the words appear in the text. Due to their sim-

plicity and adequate performance for classification, uni-grams are possibly the

most frequently used approach for the representation of texts. When used for

the representation of texts or utterances, uni-gram structures are commonly

referred to as bags of words. Usually, texts are represented as vectors over a

basis of terms or n-grams in what is called vector space model [40]. A simplistic

approach is to use binary vector components denoting the presence or absence

of the respective terms in a text. Also, other vector components may be used to

reflect term frequency counts in the text, or terms’ discriminative significance

estimated through relevance scores. A popular metric for estimating a word’s

relevance is the term frequency - inverse document frequency (TF-IDF) (Refer to

section 1.8.2 for more details about term scores).

Common feature selection algorithms are based on the aforementioned rel-

evance scores in order to filter out unimportant terms that do not exceed a

relevance treshold. In contrast, feature extraction approaches provide a trans-

formation of the initial term features into a new feature space in which seman-

tic effects related to terms can be mitigated, namely synonymy and polysemy.

Synonymy refers to the fact that multiple terms can be used to denote a single

concept - words with identical meaning4. Polysemy, on the other side, indi-

cates the existence of terms with multiple related meanings, which can there-

3) n-gram model is a sentence structure specification based on the as-
sumption that the probability of occurrence of a given word is con-
ditioned upon the prior N − 1 terms. While the n-gram specification
is of high relevance for the development of grammars and lexical
parsers, it is less important for capturing the underlying semantics
(meaning) of texts.

4) In text processing applications, the synonymy concept is used in a
general sense, to indicate not only terms with identical meaning but
also terms with similar meaning (soft synonyms)
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Tab. 1.1 Corpus definition. Number of categories (L) and number of utterances of test and

training sets

Corpus Number of Symtoms Training (# utt.) Test (# utt.)

Internet 28 3313 31535

Cable TV 79 10000 10000

fore be observed in different contexts. These semantic artifacts are pointed

out as one of the fundamental problems to be faced in text categorisation, as

they introduce a clear obstacle in capturing the semantic proximity between

texts [10]. Attempts to address synonymy and/or polysemy have relied on La-

tent Semantic Analyis (LSA) [10, 16] and feature clustering [26], among other

methods.

1.5

Utterance corpus description

For the experiments and results reported in the following sections, we used

two corpora of transcribed and annotated caller utterances gathered from user

interactions of commercial troubleshooting agents of the Internet and Cable

TV domains. Some examples of transcribed utterances are:

• Internet troubleshooting:

– Internet was supposed to be scheduled at my home today.

– I’m having Internet problems.

• Cable TV troubleshooting:

– I have a bad picture quality.

– I don’t get HBO channel. (ChannelMissing)

Further details about the corpora including the number of categories con-

sidered in this work as well as the dimensions of training5 and test sets are

shown in Table 1.1.

5) Note that, since the approaches described in this chapter make ref-
erence to small amounts of examples, we refer to the part of the
available corpora used to select the categorisers examples as training
set and, if necessary, perform certain statistical analyses which do
not require the use of utterance labels.
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1.6

Utterance preprocessing

The preprocessing module consists of part-of-speech (POS) tagging, morpho-

logical analysis, stop word filtering, and bag-of-words representation.

First, the Stanford POS tagger [23] performs an analysis of each sentence

and tags the words with their lexical categories (POS tags).

Subsequently, a morphological analyser [30] is applied to reduce the surface

word forms in utterances into their corresponding lemmas.

As a next step, stop words are eliminated from the lemmas, as they are

judged irrelevant for the categorisation. Examples are the lemmas a, the, be, for.

In this work, we used the SMART stop word list [7] with small modifications:

in particular, we deleted confirmation terms (yes and no) from the list, whereas

words typical for spontaneous speech (eh, ehm, uh) were treated as stop words.

For example, the input utterance My remote control is not turning the televi-

sion is transformed through the described steps (POS tagging, morphological

analysing and stop word filtering) as follows:

• POS tagging: my/PRP remote/JJ control/NN is/VBZ not/RB turning/VBG the/DT tele-
vision/NN6

• Morphological analysis: My remote control be not turn the television

• Stop word filtering: remote control not turn television

The salient vocabulary is then defined as the set of distinct lemmas in the

preprocessed training utterances: W = (w1, . . . , wD). The vocabulary dimen-

sions in Intenet and Cable TV troubleshooting corpora are D = 1614 and

D = 1022, respectively.

Finally, the lemmas for each utterance are combined as a bag of words.

I.e., each utterance is represented by an (unweighted) D-dimensional vector

whose binary elements represent the presence/absence of the respective vo-

cabulary element in the current utterance:

BW = (b1, . . . , bD). (1.1)

1.7

Feature extraction based on term clustering

One of the simplest categorisation algorithms is the nearest neighbour (NN)

approach. Given a set of M labelled examples per category (prototypes), the

NN algorithm assigns each input pattern to the category of the closest proto-

type. In this work, we only use one prototype per category (M = 1), selected

6) For a detailed inventory of POS tags used by the Stanford
parser and their meanings, please refer to the parser homepage:
http://nlp.stanford.edu/software/lex-parser.shtml
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from the training corpus. One should therefore expect a degradation of the

classifier performance with respect to categorisers making use of all utterance

labels in the training set. This is partly due to the prevalence of synonymy

and polysemy, which may be insufficiently represented in a small amount of

prototypes. Also what is considered to belong to a class can be arbitrary and

is up to the system design and what the classification result is used for further

down in the application7.

In effect, by using one labelled utterance per category, the effective vocabu-

lary available to the categoriser is reduced to less than 10% of the vocabulary

in the training set (W). This results in a large amount of utterances mapped to

a nomatch class, provided the existence of out-of-vocabulary terms. As exam-

ple, we want to look at the category representing a problem related to sound

(NoSound). One would select a typical caller utterance reporting this prob-

lem, no sound, as the category prototype. However, the user may utter other

alternatives, such as “problem with volume” or “lost audio”, which cannot be

matched to the desired prototype due to the bag-of-words’ orthogonalities

(absence of overlapping terms with the prototype). This problem could be

partially solved if one could detect that sound has a similar meaning to audio

or volume.

The feature extraction methods described in the following paragraphs aim

at capturing semantic relationships between words. We analyse two ap-

proaches to the classification of words based on hard and fuzzy clustering.

In hard clustering, each input pattern is unequivocally allocated to one out-

put cluster. This approach may be adequate for capturing semantically related

terms (e.g. synonyms) in output semantic classes. In contrast, a soft clustering

algorithm associates the input patterns to all output classes through a ma-

trix with membership degrees. If a considerable amount of polysemous terms

(with several related meanings) is present in the input data, fuzzy techniques

should then be more appropriate. An overview on utterance categorisation

based on term clustering is shown in Figure 1.3.

After the feature extraction phase, each input bag of words (BW) is accord-

ingly transformed into a feature vector F. Details of feature extraction based

on hard and fuzzy clustering are discussed in the following sub-sections.

7) E.g., the corpora used in this study contain a class for multiple
symptoms (like my picture is out, and I have no sound) which is pur-
posely omitted when the classifier is trained to catch such an utter-
ances with one of the single-symptom classes (such as NoPicture and
NoSound in the above example). It is extremely unlikely that such
a class would be automatically isuolated as it potentially contains
contributions from all the other classes.
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Fig. 1.3 Utterance categorisation components. For feature extraction,

hard and fuzzy approaches to term clustering are compared. Hard

clustering provide a hard mapping of each vocabulary term pattern

into a single output semantic class (black traces). In contrast, a fuzzy

clustering provides a fuzzy or soft association of each pattern to the

output classes through a membership matrix (grey lines). Hard clus-

tering can also be observed as a particular case of fuzzy clustering,

where pattern memberships are either 1 or 0.

1.7.1

Term vector of lexical co-occurrences

A frequently reported problem to word clustering is the adequate representa-

tion of word lemmas in vector structures so that mathematical (dis)similarity

metrics applied to term vectors can reflect the terms’ semantic relationships.

In this respect, there are, among other, two criteria in the literature which

attempt to explain the main characteristics of semantically related terms.

1. First order co-occurrence: two words are similar to the degree that they

co-occur or co-absent in texts [25, 42].

2. Second order co-occurrence: Two words are similar to the degree that

they co-occur with similar words [36].

The first order co-occurrence criterion is adequate for text documents where

a semantic variability can be observed inside a document. In contrast, se-

mantically related terms rarely occur inside a sentence. Thus, a second order

co-occurrence criterion seems to be more appropriate for detecting terms’ se-

mantic proximities from an utterance corpus.

Consequently, each vocabulary term wi is represented in a D-dimensional

vector of lexical co-occurrences:

Wi = (ci1, . . . , ciD) (1.2)
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wherein the constituents cij denote the co-occurrence of the terms wi and wj,

normalised with respect to the total sum of lexical co-occurrences for the term

wi:

cij =
ncij

∑
k 6=i

ncik
. (1.3)

Here, ncij denotes the total number of times that wi and wj co-occur. Finally,

in order to extract the terms’ semantic dissimilarities, we apply the Euclidean

distance between term vectors.

1.7.2

Hard term clustering

A hard clustering algorithm places each input pattern into a single output

cluster. Based on the complete-link criterion [21], the proposed term clustering

produces a partition of the vocabulary terms given an input user parameter,

the maximum intra-cluster distance dth:

1. Construct a dissimilarity matrix U between all pairs of patterns. Initially,

each pattern composes its individual cluster ck = {wk}.

2. Find the patterns wi and wj with minimum distance in the dissimilarity

matrix.

– If the patterns found belong to different clusters, ca 6= cb, and

(Umax(ca, cb)) ≤ dth, where dmax(ca, cb)) is the distance of the fur-

thest elements in ca and cj, merge clusters ca and cb.

– Update U so that Uij = ∞.

3. Repeat step 2) while Umin ≤ dth or until all patterns remain assigned to

a single cluster.

As a result of the hard term clustering algorithm, different partitions of the

vocabulary terms are obtained, depending on the input parameter dth. Be-

cause the elements in each cluster should indicate terms with a certain seman-

tic affinity, we also denote the obtained clusters as semantic classes. Table 1.2

shows examples of clusters produced by this algorithm.

After hard term clustering, the bag of words remains represented in a binary

feature vector Fhard:

Fhard = (b f1
, b f2

, . . . , b fD′
) (1.4)

where the b f i
component denotes the existence of at least one member of the

ith extracted class in the original bag of words.
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Tab. 1.2 Example utterances of semantic classes obtained by hard term clustering for dth1 =
d on a text corpus comprising 30,000 running words from the cable televison troubleshooting

domain; average number of terms per cluster is 4.71; number of extracted features is 1458

speak, talk

operator, human, tech, technical, customer, representative, agent, somebody, someone, person,

support, service

firewall, antivirus, protection, virus, security, suite, program, software, cd, driver

reschedule, confirm, cancel, schedule

remember, forget

webpage, site, website, page, web, message, error, server

megabyte, meg

technician, appointment

update, load, download

boot, shut, turn

user, name, login, usb

area, room, day

Disambiguation If applied to bags of words or feature vectors extracted from

hard term clusters, the NN classifier rejects a considerable number of ambigu-

ous utterances for which several candidate prototypes are found8. A disam-

biguation module was therefore devised to resolve the mentioned ambiguities

and map an ambiguous utterance to one of the output categories.

First, utterance vectors with more than one candidate prototype are ex-

tracted. For each pattern, we have a list of pointers to all candidate proto-

types. Then, the terms in each pattern that cause the ambiguity are identified

and stored in a competing term list.

As an example, let us consider the utterance I want to get the virus off my

computer which, after pre-processing and hard term clustering, results in the

feature set computer get off virus. Its feature vector has maximum similarity to

the prototypes computer freeze (category CrashFrozenComputer) and install pro-

tection virus (category Security). The competing terms that produce the ambi-

guity are in this case the words computer and virus. Therefore, the disambigua-

tion among prototypes (or categories) is here equivalent to a disambiguation

among competing terms. For that reason, as a further means of disambigua-

tion, we estimate the informativeness of a term wi as shown in Equation 1.5:

I(wi) = −(log(Pr(wi)) + α · log( ∑
j

Lj=N

cijPr(wj))) (1.5)

8) Candidate prototypes are such prototypes which share maximum
proximity to the input utterance. This happens specially when the
similarity metric between the vectors results in integer values, e.g. in
the case of using the inner product of binary vectors as the aforein-
troduced bags of words and feature vectors are.
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where Pr(wi) denotes the maximum-likelihood estimation for the probability

of the term wi in the training corpus, and Lj refers to the part-of-speech (POS)

tag of wj.

As it can be inferred from Equation 1.5, two main factors are taken into

account in order to estimate the relevance of a word for the disambiguation:

a) the word probability and

b) the terms’ co-occurrence with frequent nouns in the corpus.

The underlying assumption that justifies this second factor is that words rep-

resentative of problem categories are mostly nouns and appear in the corpus

with moderate frequencies. The parameter α is to control the trade-off be-

tween the two factors. Reasonable values are in the range of (α ∈ [1, 2]) plac-

ing emphasis on the co-occurance term; for our corpus, we use α = 1.6 we

found best-performing in the current scenario.

Finally, the term with highest informativeness is selected among the com-

petitors, and the ambiguous utterance vector is matched to the corresponding

prototype or category.

1.7.3

Fuzzy term clustering

The objective of the fuzzy word clustering used for feature extraction is a

fuzzy mapping of words into semantic classes and leads to the membership

matrix M representing this association.

1.7.4

Pole-based overlapping clustering

In the PoBOC algorithm [8], two kinds of patterns are differentiated: poles

and residuals.

Poles are homogeneous clusters which are as far as possible from each other.

In contrast, residuals are outlier patterns that fall into regions between two or

more poles. The elements in the poles represent monosemous terms, whereas

the residual patterns can be seen as terms with multiple related meanings (pol-

ysemous).

The PoBOC algorithm is performed in two phases: (i) pole construction,

and (ii) multiaffectation of outliers.

In the pole construction stage, the set of poles {P} = {P1, · · · , PD′} and

outliers {R} are identified and separated. Poles arise from certain terms with

maximal separation inside a dissimilarity graph which are therefore known as

the pole generators.

In the multi-affectation stage, the outliers’ memberships to each pole in {P}
are computed. Finally, the term wi is assigned a membership vector to each Pj
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pole as follows:

Mij =





1, if wi ∈ Pj

1− dav(Wi, Pj)/dmax if wi ∈ {R}

0, otherwise

(1.6)

where dav(Wi, Pj) denotes the average distance of the wi word to all objects in

Pj, and dmax refers to the maximum of the term dissimilarity matrix.

For computing the semantic dissimilarity of terms, experiments with both

Euclidean and cosine distances9 were carried out.

PoBOC with fuzzy C-medoids The fuzzy C-medoids algorithm (FCMdd) [22]

computes the fuzzy membership matrix M starting from an initial choice of

cluster representatives or medoids. We initialise the algorithm with the D′ pole

generators (C = D′) obtained at the pole construction phase of the PoBOC

scheme. The final solution for the membership matrix M is then reached

through the iterative repetition of two steps: (i) (re)calculation of pattern mem-

berships to the D′ classes, and (ii) recomputation of the cluster medoids. The

membership update of the term Wi to the jth class is defined as:

Mij =

(
1

d(Wi,Cj)

) 1
m−1

C

∑
k=1

(
1

d(Wi,Ck)

) 1
m−1

(1.7)

denoting Ck, the kth class medoid, d(Wi, Ck), the dissimilarity between the

term vector Wi and the medoid Ck, and m, a fuzzyfier factor, m ∈ [1, ∞), de-

noting the smoothness of the clustering solution (m = 2 in this work). The pro-

cedure is iterated until either the updated cluster centroids remain the same,

or a maximum number of iterations is reached.

Utterance feature vector Finally, the feature vector obtained with soft term

clustering, Fso f t, is calculated as the normalised matrix product between the

original bag of words BW and the membership matrix M:

Fso f t =
BW(1xD) · M(DxD′)

|BW ·M|
. (1.8)

1.7.5

Utterance categorisation

The objective of utterance categorization is to map an input utterance—

represented as bag of words (BW) or feature vector after hard or soft word

9) The cosine distance metric, Dcos is defined as the negative of the
cosine score, Dcos = 1− Scos.



1.8 Supervised methods for utterance categorization 19

clustering—into one of the N categories, denoted by the N prototypes sup-

plied to the nearest neighbour algorithm. The closeness of an input utterance

vector to each one of the prototypes is quantified by means of the inner prod-

uct between their feature vectors, Fi and Fj:

s(Fi, Fj) = Fi · FT
j . (1.9)

1.8

Supervised methods for utterance categorization

In this section, we describe two supervised approaches for utterance categori-

sation: a probabilistic framework (Naïve Bayes classifier) and a vector model

with term weighting. F denotes the number of labelled exampes per category,

randomly selected.

1.8.1

Naïve Bayes Classifier

Naïve Bayes is a powerful and yet simple text categorisation algorithm usually

reporting adequate performance. It selects the most probable class ĉ out of a

set C given a test utterance u:

ĉ = arg max
c∈C

P(c|u) (1.10)

This expression cannot be computed directly, but it can be reformulated

using the Bayes rule as:

ĉ = arg max
c∈C

P(c)(u|c). (1.11)

By assuming conditional independence of the utterance terms, the Naïve

Bayes solution can be expressed as:

ĉ = arg max
c∈C

P(c) ∏
wi∈u

(wi|c) (1.12)

where P(c) denotes the class prior probability estimated from the selected

set of labelled samples10. To deal with the zero probability phenomenon, we

applied Laplacian smoothing.

10) The generic variable F is used to reflect the number of examples per
category randomly selected from a corpus of labelled utterances.
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1.8.2

Vector model with term weighting for utterance classification

In information retrieval, document classification and text summarisation, each

document is usually represented by means of a term vector, D (Equation 1.13)

D = a1, a2, · · · , aN (1.13)

where the components a reflect the relative significance of terms in relation to

the document in hand.

Term scores are generally computed as a contribution of two factors: (i) the

absolute or relative frequencies of terms in the document, and (ii) the term

dispersion over all documents. The second factor is also used for feature se-

lection characterising the “noisy” behaviour of terms.

Term frequency In the literature, one finds different definitions for the term

frequency. In this work, we use two formulations taken from [12] and [32]:

TF1(w, d) =
C(wi, d)

∑j C(wj, d)
(1.14)

TF2(w, d) =

{
1 + log(C(wi, d)) if C(wi, d) > 0

0 otherwise
(1.15)

where C(w, d) denotes the occurrence counts of the term w in the document

d.

IDF, RIDF and ISCF scores We analysed three relevance scores to capture the

term distribution across documents: the inverse document frequency (IDF),

residual inverse document frequency (RIDF) and a new formulation, the in-

verse spectral crest factor (ISCF).

• Inverse document frequency (IDF). This popular definition was pro-

posed by [39]:

IDF(w) = −log(
NDw

ND
) (1.16)

where NDw denotes the number of documents in which the term w oc-

curs; and ND is the total amount of documents in the collection. In

this work, the number of documents corresponds to the number of cate-

gories ND = L.

However, the practical number of sample utterances in a given class
may be lower than F if there are less than F labelled utterances avail-
able for that category. We use this information for the estimation of
the category priors P(c).
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• Residual inverse document frequency (RIDF). This is a variant of the

inverse document frequency, proven effective for automatic text sum-

marisation [39]. It represents the difference between the IDF of a term

and its expected value ÎDF according to a Poisson model.

RIDF(w) = IDF− ÎDF (1.17)

with

ÎDF(w) = −log(1− e−λw) (1.18)

where λw denotes the parameter of the Poisson distribution, calculated

here as the average occurrence of the w term across all ND documents:

λw = ∑
j

Nw j
/ND. (1.19)

Main advantage of RIDF compared to IDF is that rare terms are not

assigned exaggerated relevances.

• Inverse spectral crest factor (SCF). We propose a third metric called in-

verse spectral crest factor (ISCF). Motivation for the introduction of this

formulation is to achieve a more accurate indicator of the term distri-

bution over the categories. An IDF-based metric would place lower

relevance on terms observed in more than one category. However, this

metric does not reflect the possibility that terms may occasionally appear

in several categories.

The Spectral Crest Factor (SCF) is one of the measures used in audio

processing [35] for determining the noisy character of the signal com-

ponents through an analysis of their short time spectra. It provides an

estimate of the spectral flatness, as the ratio of the arithmetic mean energy

across spectral bands with respect to the maximum energy. We adopted

this metric to estimate a term’s dispersion across categories. The term

relevance is given by the inverse spectral crest factor, defined as:

ISCF(w) =
ND ·maxi(TF1(w, di))

∑j TF1(w, dj)
. (1.20)

1.9

Evaluation methods and results

In this section, we describe the methods to evaluate the performance of utter-

ance classification models described in previous sections.
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Tab. 1.3 Utterance categorisation with one labelled utterance per class using several feature

extraction techniques and disambiguation

Term Disambiguation Accuracy

clustering

– no 45%

– yes 57%

Soft (PoBOC) no 50%

Soft (PoBOC + FCMdd) no 47%

Hard no 50.8%

Hard yes 62.2%

This is done by comparing the output categories the proposed algorithm as-

signs to a number of test utterances with manually assigned categories thereof

(the reference). If both categories coincide, the automatic categorisation is con-

sidered correct, otherwise it is counted as error. As overall accuracy, we define

accuracy =
# correctly classified test utterances

# total utterances in test set
. (1.21)

1.9.1

Classification with one labelled utterance and feature extraction

Table 1.3 shows the accuracy values reached on the Internet corpus by the

nearest neighbour classifier applied to bags of words and feature vectors in

case of feature extraction, with one sample utterance per category. In this

case, the samples have been manually selected in such a way that overlapping

terms in different category samples is minimised.

Comparing classification performance without disamgiguation to the base-

line (no term clustering; at 45%), we see that both soft and hard term clustering

perform very similar: PoBOC and hard term clustering achieve around 50%

outperforming the baseline by about 10% relative.

As motivated in Section 1.7.2, disambiguation partially overcame the

sparseness of having only one example utterance per class shown by signifi-

cant improvements from 45% to 57% on the baseline without term clustering

(27% relative) and 50.8% to 62.2% on hard term clustering (22% relative). Hard

term clustering with disambiguation outperformed the baseline by 38.2% rel-

ative.
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Fig. 1.4 Mean accuracy rates achieved by the Naïve Bayes classi-

fier and a vector model (nearest neighbour) with TFIDF, TFRIDF and

TFISCF term weights in a logarithmic x-axis. Reported accuracy val-

ues refer to averaged results across 20 runs of the algorithm with

different input sets of training utterances, randomly selected from a

labelled corpus.

1.9.2

Classification based on F samples per category

The following paragraphs show a comparative analysis of the Naïve Bayes

classifier and the approach based on weighted document vectors. In particu-

lar, we investigate the dependency between classifier performance and num-

ber of (randomly chosen) samples per category (F ∈ [1, 100]). Tests are per-

formed on the Cable TV troubleshooting corpus (10000 test utterances and 79

problem categories). Figure 1.4 depicts the performance of the Naïve Bayes

classifier and Nearest Neigbour using term weighting against the number of

samples/category F. Based on these experimental results, several observa-

tions can be made:

• Naïve Bayes outperforms NN with term weighting and term relevance

scoring (TF2(w, d)) for numbers of samples greater than 7. The worse

performance of Naïve Bayes in these cases may be attributed to the use

of Laplacian smoothing. For small numbers of examples, the ratio of

terms with a frequency of zero in the set of examples is rather large (Fig-

ure 1.5).

Therefore, using Laplacian smoothing in conjunction with the Naïve

Bayes classifier may produce inaccurate term probability estimates.
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Fig. 1.5 Ratio of terms in test utterances with zero frequency in sam-

ple utterance set vs number of sample utterances per category.

Note that, without the use of Laplacian smoothing, the TF2(w|c) and

P(w|c) would be identical.

• We also observed a dependency of classifier’s performance on the spe-

cific term frequency metric (TF1 or TF2, respectively). The normalisation

with respect to the document lengths introduced in TF2 seems to be a

better strategy for few examples, but the classifier performance is sta-

bilised after a number F = 7 of samples. Also at this point, TF1 starts to

outperform TF2. One possible reason for this phenomenon is the high

sentitivity of classifiers to different utterance lengths when a small num-

ber of examples is provided.

• Contribution of IDF, RIDF and ISCF: Although TFRIDF was proposed

as a more efficient solution in automatic text summarisation, TFIDF has

outperformed TFRIDF on this kind of data. This fact may be associated

to certain characteristics of the utterance corpus and the way category

documents are generated. On the one hand, there is a large number of

terms which may be indicative of more than one category. This happens

because the mentioned categories indicate different problems which can

be experienced with a single device. For example, for problems related

to the quality of received image, utterances like picture has poor quality

are commonly observed, and less frequently, utterances like bad picture.

However, there also exist other categories to cover additional problems

related to the picture. Here, we refer to terms such as quality, poor or
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bad, as specific category terms, in contrast to generic terms like picture.

A generic term is descriptive for several categories simultaneoulsy, in

which it occurs whith considerably high frequencies. Generic terms may

be found to the extent that some underlying hierarchical category struc-

ture can be assumed. We also distinguish a third kind of terms, refered to

as noisy terms, which can be observed in many different categories, gen-

erally with low frequencies. It is desirable to emphasize specific terms

with respect to generic terms, in order to “protect” utterances with a

high probability of error like bad picture.

In this respect, IDF scores capture a term’s spreading over documents

regardless of the term frequency in the documents. However, the aver-

age frequency of these terms (parameter λw of the Poisson model) con-

siderably exceeds that of specific terms. According to a Poisson model,

these terms (picture) should spread even more over documents in con-

trast to terms with low λw (specific terms), and, therefore, a part of

the bias introduced by IDF appears compensated in the residual af-

ter subtracting the Poisson estimation ÎDF. Moreover, no significant

differences can be observed between TFISCF and TFIDF. The use of

ISCF scores was motivated to provide a more precise estimate of the

term/category distribution which reflects the different frequences of the

term in the category documents. However, one fact to be considered is

that IDF and ISCF scores are here multiplied to TF scores. This may also

explain why, despite of its simplicity, TFIDF scores are among the most

broadly used metrics in text processing. Whether ISCF can be effective

for global feature selection remains an open question.

1.10

Summary and conclusion

In this article, we described different models for the categorisation of caller ut-

terances in the scope of automated troubleshooting agents . One of the goals

of this research is to help overcome costs associated to manual compilation

of large training data sets. In the first part of the article, we proposed cate-

gorisation schemes which make use of only one labelled sample per category.

The proposed solution is based on feature extraction techniques which auto-

matically identify semantic word classes on a corpus of unlabelled utterances.

Hard and fuzzy word clustering methods were compared. The performance

of feature extraction for utterance classification was experimentally evaluated

on a test corpus of more than 3000 utterances and 28 classes. The most op-

timistic outcomes were achieved with hard word clustering in combination
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with a module for reallocating ambiguous utterances providing a maximum

of 62.2% accuracy.

The second part of the paper provided an overview of supervised classi-

fiers commonly used for the categorisation of texts. A probabilistic framework

(Naïve Bayes) and a vector model with term relevance scores were described.

We experimentally compared these classifiers on a test corpus of 10000 utter-

ances and 79 classes. An analysis of the classifier’s dependency on the number

of labelled examples was carried out. Our experiments reported an inflection

point in the classifier’s behaviour around seven training samples per category.

For lower numbers of training samples, Nearest Neighbor classification with

term weighting schemes achieved higher accuracies, whereas for larger num-

bers, Naïve Bayes outperfoms the other classifiers.



References 27

References

1 Acomb K., Bloom J., Dayanidhi K., Hunter
P., Krogh P., Levin E., and Pieraccini R.
(2007) Technical Support Dialog Systems:
Issues, Problems, and Solutions. In Proc. of
the Workshop on Bridging the Gap: Academic
and Industrial Research in Dialog Technologies.
Rochester, USA.

2 Agrawal R., Gehrke J., Gunopulos D., and
Raghavan P. (1998) Automatic subspace
clustering of high dimensional data for
data mining applications. pages 94–105.

3 Aksoy S. and Haralick R. (2001) Feature
Normalization and Likelihood-Based Simi-
larity Measures for Image Retrieval. Pattern
Recognition Letters 22(5).

4 Bach E. and Harms R. (1968) Universals
in Linguistic Theory. Holt, Rinehart and
Winston, New York, USA.

5 Blum A. and Mitchell T. (1998) Combining

Labelled and Unlabelled Data with Co-
Training. In Proc. of the COLT. Madison,
USA.

6 Bühler D., Minker W., and Elciyanti A.
(2005) Using Language Modelling to In-
tegrate Speech Recognition with a Flat
Semantic Analysis. In Proc. of the SIGdial
Workshop on Discourse and Dialogue. Lisbon,
Portugal.

7 Buckley C. (1985) Implementation of the
SMART information retrieval system.
Technical report, Cornell University, Ithaca,
USA.

8 Cleuziou G., Martin L., and Vrain C. (2004)
PoBOC: An Overlapping Clustering Algo-
rithm. Application to Rule-Based Classica-
tion and Textual Data. In Proc. of the ECAI.
Valencia, Spain.

9 Chapelle O., Schölkopf B., and Zien A.
(2006) Semi-Supervised Learning. MIT Press,
Cambridge, USA.

10 Deerwester S. C., Dumais S. T., Landauer
T. K., Furnas G. W., and Harshman R. A.
(1990) Indexing by latent semantic analysis.
Journal of the American Society of Information
Science 41(6): 391–407.

11 Dempster A., Laird N., and Rubin D. (1977)
Maximum Likelihood from Incomplete
Data via EM Algorithm. Journal of Royal
Statistical Society 39(1).

12 Debole F. and Sebastiani F. (2003) Super-
vised Term Weighting for Automated Text
Categorization. In Proc. of the SAC. Mel-
bourne, USA.

13 Ester M., Kriegel H., S J., and Xu X. (1996)
A density-based algorithm for discover-
ing clusters in large spatial databases with
noise. In Proc. of KDD-96.

14 Evanini K., Suendermann D., and Pierac-
cini R. (2007) Call Classification for Auto-
mated Troubleshooting on Large Corpora.
In Proc. of the ASRU. Kyoto, Japan.

15 Hinneburg A. and Keim D. A. (1998) An ef-
ficient approach to clustering in large mul-
timedia databases with noise. In Knowledge

Discovery and Data Mining, pages 58–65.

16 Hofmann T. (1999) Probabilistic latent se-
mantic analysis. In Proc. of Uncertainty in
Artificial Intelligence, UAI’99. Stockholm.

17 Hartigan J. and Wong M. (1979) Algorithm
AS136: A k-means clustering algorithm.
Applied Statistics 28: 100–108.

18 (1995) Interactive Services Design Guide-
lines. Technical Report ITU-T Recommen-

dation F.902, ITU, Geneva, Switzerland.

19 Jain A. and Dubes R. (1988) Algorithms for
Clustering Data. Prentice Hall, Englewood
Cliffs, USA.

20 Jain A. and Mao J. (2000) Statistical Pat-
tern Recognition: A Review. IEEE Trans.
on Pattern Analysis and Machine Intelligence
22(1).

21 Johnson S. (1967) Hierarchical Clustering

Schemes. Psychometrika 32(3).

22 Krishnapuram R., Joshi A., Nasraoui O.,
, and Yi L. (2001) Low-Complexity Fuzzy
Relational Clustering Algorithms for Web
Mining. IEEE Trans. on Fuzzy Systems 9(4).

23 Klein D. and Manning C.-D. (2003) Fast
Exact Inference with a Factored Model for
Natural Language Parsing. Advances in
Neural Information Processing Systems 15:
3–10.

24 Kauffmann L. and Rousseeuv P. (1990)
Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley & Sons, New York,
USA.

25 Li Y. and Jain A. (1998) Classification of
Text Documents. Computer Journal 41(8).



28 References

26 Li Y. H. and Jain A. K. (1998) Classification
of Text Documents. The Computer Journal
41(8).

27 Levin E. and Pieraccini R. (1995)
CHRONUS, the Next Generation. In Proc.
of the ARPA Workshop on Human Language
Technology. Austin, USA.

28 Minker W., Albalate A., Bühler D., Pitter-
mann A., Pittermann J., Strauss P., and
Zaykovskiy D. (2006) Recent Trends in Spo-
ken Language Dialogue Systems. In Proc. of
the ICIT. Cairo, Egypt.

29 M. Ankerst M. M. Breunig H.-P. K. and
Sander J. (1999) OPTICS: Ordering Points
To Identify the Clustering Structure. In
Proc. of ACM-SIGMOD International Confer-
ence on Management of Data. Philadelphia,
Pennsylvania, United States.

30 Minnen G., Carrol J., and Pearce D. (2001)
Applied Morphological Processing of En-
glish. Natural Language Engineering 7(3).

31 Minker W. (1998) Speech Understanding
for Spoken Language Systems – Portability
Across Domains and Languages. Hänsel-
Hohenhausen, Frankfurt, Germany.

32 Mori T., Kikuchi M., and Yoshida K. (2001)
Term Weighting Method Based on Infor-
mation Gain Ratio for Summarizing Docu-
ments Retrieved by IR Systems. In Proc. of
the NTCIR Workshop. Tokyo, Japan.

33 Morimoto T., Shikano K., Iida H., and
Kurematsu A. (1990) Integration of Speech
Recognition and Language Processing in
Spoken Language Translation System (SL-
Trans). In Proc. of the ICSLP. Kobe, Japan.

34 Ng R. and Han J. (1994) Efficient and ef-
fective clustering methods for spatial data
mining. In Proc. of the 20th Conference on
VLDB. Santiago, Chile.

35 Peeters G. (2003) A Large Set of Audio Fea-
tures for Sound Description. Technical
report, IRCAM, Paris, France.

36 Picard J. (1999) Finding Content-Bearing
Terms using Term Similarities. In Proc. of
the EACL. Bergen, Norway.

37 Pyle D. (1999) Data Preparation for Data

Mining. Morgan Kaufmann, Los Altos,
USA.

38 Rabiner L. (1989) A Tutorial on Hidden
Markov Models and Selected Applications
in Speech Recognition. Proc. of the IEEE
77(2).

39 Renals G. M. S. (2007) Towards Online
Speech Summarization. In Proc. of the Inter-
speech. Antwerp, Belgium.

40 Salton G., Wong A., and Yang C. S. (1975) A
Vector Space Model for Automatic Index-
ing. Communication of the ACM 18(11).

41 Wagstaff K., Cardie C., Rogers S., and
Schroedl S. (2001) Constrained K-Means
Clustering with Background Knowledge.
In Proc. of the ICML. Williamstown, USA.

42 Wulfekuhler M. and Punch W. (1997) Find-
ing Salient Features for Personal Web Page
Categories. In Proc. of the International Web
Conference. Santa Clara, USA.

43 Zhang T., Ramakrishnan R., and Livny M.
(1997) Birch: A New Data Clustering Algo-
rithm and Its Applications. Data Mining
and Knowledge Discovery 1(2).


